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INTRODUCTION

Although screening x-ray mammography has become a very sensitive method
for detecting breast cancer, mammography has low specificity in its
diagnostic stage. About 67-85% of breast biopsies are performed on benign
lesions. Because of cost and detrimental effects of unnecessary biopsies, the
number of biopsies performed on benign lesions needs to be reduced. In this
research we are developing a highly sensitive and specific compute-aided
diagnosis classifier based on the likelihood ratio, which is designed to aid
physicians to identify lesions that should not be sent to biopsy. The
classifier is being developed using a large database of over four thousand
breast biopsy cases from several medical centers. The cases present in the
databases are described using BI-RADSTM lexicon and patient history, and
represent the collective knowledge of physicians. The resulting classifier
will be statistically based, mathematically simple, and computationally
efficient. Rigorous and exhaustive classifier evaluation methods include
Receiver Operating Characteristic (ROC) analysis and leave-one-out bootstrap
sampling.
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STATEMENT OF WORK (01-2004)
Task 1. Develop and optimize case representation and database of over 4500
biopsy cases. (Months 1-36)
a. Previously acquired cases from Duke University, University of Pennsylvania
(Penn)
b. Continue extracting information for cases from the (DDSM) database of
University of South Florida
c. Acquire cases from other medical institutions

Task 2. Develop the LR and optimize its subcomponents. (Months 1-24)
a. Optimize mathematical feature representation from categorical case data
b. Estimate and optimize the N-dimensional density distribution of features
(histogram approach, histogramming with smoothing functions, nearest-neighbor
approaches, optimal decision fusion, kernel-density estimation)
c. Optimize features used (exhaustive search techniques, singular value
decomposition, principle component analysis)
d. Evaluate model using ROC analysis, Round Robin sampling, and bootstrap

Task 3. Evaluate the performance of the LR under various conditions stemming
from the input data. (Months 12-30)
a. Train and test separately on data from different institutions (i.e. train
on all cases, test on cases from Duke University)
b. Train and test separately on different lesion types (i.e. train on all
cases, test on mass lesions)

Task 4. Simulate and evaluate the use of LR in a clinical setting. (Months
24-36)
a. Analyze the optimized classifier on a set of data not used in
training/development.
b. Examine how the standards (sensitivity, specificity) set on the training
data affect the sensitivity and specificity on the new test data
c. Establish guidelines for retraining the classifier when a significant
amount of new data is added
d. Conduct a retrospective clinical evaluation to evaluate LR's influence on
physician's performance.



BODY

Task 1 is an ongoing effort to collect more cases. A large database of
cases has been obtained and adapted for the project. The initial database
has been increased by approximately 400 cases from Duke University, which
were previously unavailable to us. Approximately 400 cases from Sloan-
Kettering Cancer Institute, 600 cases from the University of North Carolina,
and 125 cases from University of Maryland have also been recently obtained.
Case acquisition and selection will continue as possible, although this task
has been completed and outdone as presented in the Statement of Work.

As specified in Task 2, a first generation likelihood ratio-based (LRb)
classifier has been developed. The likelihood ratio is the optimal detector
to determine the presence or absence of a signal in noise. 1- Given features
describing the presence of a suspicious lesion on a mammogram, one has to
decide whether or not a malignancy - a signal - is present. The likelihood

ratio X is optimal under the assumption that full knowledge of the statistical
properties of the data is known. The likelihood ratio is also referred to as
the ideal observer.

The hypothesis that the signal is present is the HIl hypothesis, and the
"no signal" or null hypothesis is referred to as HO. The decision whether the
signal is present or absent is optimized by thresholding the likelihood ratio
X(v),
X(V) = p(V I Hl)

p(V I HO)
where the p(VIHI) represents the probability density function (PDF) of the
available data V under the "signal present" hypothesis, and p(VIHO)
represents the PDF of the available data under the "no signal" hypothesis.
The signal to be detected is the malignancy of the breast lesion. Therefore,
we used the available descriptions for malignant biopsy cases to represent
the Hl distribution, and the descriptions for benign biopsy cases to
represent the HO distribution. More detail on classifier development is also
available.6 , 7

Task 2a. Specifically, the biopsy cases present in our database were
described with BI-RADSTM lexicon, which is a collection of categorical
descriptives for features (Table 1). We evaluated two approaches: 1) ranking
and 2) histogram-based. 1) The categorical descriptives for each feature
were arranged in order of increasing risk of malignancy, and a ranking scale
was assigned. This scale had been established in consultation with
physicians. This ranking scale was used in conjunction with nearest neighbor
approaches (see Task 2b). 2) While the ranking approach is practical and has
resulted in commendable performance, it is possible that better performance
can be achieved without the use of a classifier that depends on a numerical
or ranking scale. This is true because while one finding might be
considered more malignant than another, real-life performance and database
content might not be reflected in the ranking assignments. For example,
physicians might consider dystrophic calcifications more at risk to be
malignant than round, and thus designate a rank of 10 to dystrophic
calcifications, and 9 to round calcifications. However, physicians might
assign round more often to malignant calcifications than dystrophic, thus
behaving in opposition to their scale. Any classifier that utilizes averaging
or interpolation of findings will be dependent on this scale/ordering of the
categorical features, and may be affected unfavorably. For the second pass,
therefore, we have chosen to represent the categorical features as discrete
histogram distributions. Such nonparametric models can be very effective,
and also reduce the risk of misinterpreting the data. 8 Conversely, parametric
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models often interpolate the data, yet it might be unnatural to average
categorical feature findings.

We have concluded that the best feature representation is one that is
independent of ranking scales, and follows naturally from the data presented
- the histogram approach. Our data supports this conclusion, since best
performance so far has been achieved with the histogram-encoded version of
the classifier.

Table 1: BI-RADSTM feature representation using the ranking approach. The
ranking was established in consultation with mammographers.

Feature Finding Feature Finding
(1) Patient years (9) Calcification no calcs 0

Age Number <5 1
(2) Mass no mass 0 5 to 10 2

Margin well-circumscribed 1 >10 3
microlobulated 2 no info -1
obscured 3 (10) Associated none 0
ill-defined 3 Findings skin lesion 1
spiculated 4 hematoma 2
no info -1 post surgical scar 3

(3) Mass no mass 0 trabecular thickening 4
Density fat-containing 1 skin thickening 5

low-density 2 skin retraction 6
isodense 3 nipple retraction 7
high-density 4 axillary adenopathy 8
no info -1 architectural distortion 9

(4) Mass no mass 0 no info -1
Shape round 1 (11) Special none 0

oval 2 Cases intrammamary lymph node 1
lobular 3 assymetric breast tissue 2
irregular 4 focal assymetric density 3
no info -1 tubular density or

(5) Mass mm solitary dilated duct 4
Size no info -1

(6) Menopause pre-menopausal 1 (12) Quad posterior 1
post-menopausal 2 central 2
no info -1 LIQ 3

(7) Calcification no calcs 0 LOQ 4
Distribution diffuse 1 UIQ 5

regional 2 UOQ 6
segmental 3 axillary tail 7
linear 4 subareolar 8
clustered 5 no info -1
no info -1 (13) Change no change 0

(8) Calcification no calcs 0 from prior new lesion 1
Morphology milk of calcium-like 1 qualitative change 2

eggshell or rim 2 quantitative change 3
skin 3 no info -1
vascular 4 (14) Architectural none 0
spherical or lucent-centered 5 Distortion as present 1
suture 6 main finding no info -1
coarse ("popcorn") 7 (15) Hormone no hormone use 1
large rod-like 8 Use hormones (such as BCP
round 9 estrogen, progesterone) 2
dystrophic 10 no info -1
punctate 11 (16) Breast left 1
indistinct 12 Side right 2
pleomorphic 13 no info -1
fine branching 14
no info -11
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The next challenge (Task 2b) concerned the logistics of the
representation of the HO and HIl feature distributions for the biopsy cases.
While it would be ideal to compute the f-variate distribution of all the
features for the LRb, populating the 16-dimensional feature space presents a
problem: an extremely large number of cases would be needed to provide an
adequate representation of the 16-dimensional space. There are possible
solutions to this problem that we have utilized: 1) estimating the
distributions with nearest-neighbor approaches, 2) with histogram approach.

Task 2b. Nearest Neighbor approach.
In the nearest neighbor approach, we compared a test case to a reference
(training) collection of cases, and identified similar cases. Euclidean
distance measure was used to determine the similarity between the test case
and the reference cases. Each finding was first normalized using linear
scaling to unit range. The distance between a test case and a reference case
is thus, n

DEL,,c1dwnf( test. re) = 2 1 - Oi.j2

where n is the number of features (2 in this setup), and 4 is the normalized
feature value for the specific case (test or reference), and feature i (mass
margin or age). Given this distance between the test case and a reference
case, the two cases were judged to be similar if the distance between them
was less than a specified similarity threshold. In an event where the test

case matches none of the reference cases, the test case is automatically
assigned a decision variable of 1, resulting in a malignant classification
for the test case. The best similarity threshold was obtained by
exhaustively examining all possible thresholds and maximizing partial ROC
area (0.90AUC). The nearest neighbor approach of finding similar cases allows
us, in effect, to create running averages of the feature distributions. The
exact process of averaging depends on the distance measure of choice. Results
of this approach and the exhaustive search for the best similarity distance
and feature combination is presented below in 2c, feature optimization.

Histogram approach of optimizing density. Given the small number of
findings for each of the BI-RADSTM features, we can represent the densities as
histograms with fixed bins. This will allow the findings of a feature to
remain separate and unaffected by ordering. For example, since mass shape
has only four possible descriptions, four bins will be designated for each
finding. We have also introduced a fifth bin, to represent the lack of
information, or "no info." Therefore, the mass shape histogram has five
possible bins. A different strategy was chosen for the continuous findings,
such as age and mass size. Creating a histogram for these is slightly more
complex due to the large number of possible values. We used Scott's rule8-10

to determine the optimal histogram bin width h. Let a represent the standard
deviation and n the number of available observations. The optimal bin width
h is then,

h=3.5*Y*n-1/3

The interval within two standard deviations of the mean was subdivided by the
bin width. Observations falling outside the two standard deviations were
included in extreme right and left bins. For the mass size distribution,

this resulted in nine bins. An extra bin indicating "no information" was
also added, resulting in ten bins for the mass size distribution.
Essentially, in this setup the encoding of categorical (BI-RADS TM ) findings
matters little. The only fact of importance is that each finding remains a
separate category. We eventually encode the findings as numbers in the
algorithm, because it is easier for a computer program to use them, but the
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values we choose can be any number. More information on density estimation
using histogram approach is available.'

The optimization of the density distribution will continue. In summary,
we have performed nearest-neighbor approaches and histogram representation.
Little potential is now foreseen for the wavelet and frequency approaches,
and in alternative we will work on kernel density estimation.

For feature optimization (Task 2c), singular value decomposition and

principle component analysis remain to be evaluated, while for nearest
neighbor approach exhaustive search technique has been completed.

Task 2c. All possible combinations of ten features were examined to

optimize the similarity selection criteria on 1027 mammographic cases from
Duke. Two distance measures, Euclidean and Hamming, were used for the
nearest-neighbor approach. In all, 1023 feature combinations (strategies)
were investigated. Out of the 1023 strategies examined, the strategy that
produced the largest ROC area (0.818 ± 0.013) for the Hamming distance
measure included comparison of six of the features: calcification
distribution, calcification number, calcification morphology, mass margin,
mass shape, and age. The strategy that produced the largest ROC area (0.822 ±
0.013) for the Euclidean distance measure included six of the features:
calcification number, calcification morphology, mass margin, mass shape,
special findings, and age. The results of the ROC analysis for 200 bootstrap
samples of the top strategies for each distance measure are summarized in
Table 2, showing mean values and standard deviations. Based on these results,
the most influential features appear to be patient age, mass margin, mass
shape, and calcification morphology.

Table 2: Performance summary for top feature combinations of the Hamming and
Euclidean distance measures.

Distance Measure AUC 0.90AUC False Positive False Positive False Positive
Fraction at 100% Fraction at 98% Fraction at 95%

Sensitivity Sensitivity Sensitivity

Hamming 0.818 ± 0.013 0.393 ± 0.028 0.796 ± 0.044 0.664 ± 0.023 0.608 ± 0.036

Euclidean 0.822 ± 0.013 0.423 ± 0.030 0.913 ± 0.109 0.684 ± 0.068 0.537 ± 0.033

As specified in Task 2d, The performance of the classifier was

evaluated using Receiver Operating Characteristic (ROC) analysis. We were
most interested in the performance at high sensitivities, because missing a

malignancy is a graver risk to the patient. Therefore, the main performance
metrics throughout this research included: (1) area under the curve (AUC),
which represents average sensitivity over all specificities, (2) partial area
index (PAT) above the sensitivity of 90%, which represents the performance of
classifier at high sensitivities, and (3) the specificity at 98% sensitivity.
The last metric helps indicate how many benign cases could be potentially
spared from biopsy while correctly diagnosing 98% of malignancies. This means
that 2% of the malignancies could have potentially delayed biopsy and
treatment. Since the cases in our database are diagnostic mammography cases,
and the physician is already aware of the suspicious lesion, it is
conceivable that the performance of the classifier with the physician could
be 100% sensitivity.

In summary, ROC and the other evaluation techniques are under
consistent utilization for testing each new modification to the classifier,
as can be seen throughout this BODY and references. 6 ' " n

Task 3. The acquisition of new'cases from other medical institutions

substantially increases the effort required to complete this task. An
evaluation has been carried out on a) a subset of cases from two
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institutions, Duke University and University of Pennsylvania, and b) on
different lesions types from Duke University data.

Task 3a. Evaluation on different lesions from Duke University.
The database used consisted of 1433 biopsy-proven cases from Duke

University Medical Center. The cases were divided into 3 categories: mass
cases (646 total, 233 malignant), calcification cases (653,219), and other
(134,50). Each mass case contained a mass lesion, and possibly also contained
calcifications and other findings. Calcification cases contained
calcifications and possibly other findings, but no mass lesions. Other cases
included cases with all other findings, but did not contain masses or
calcifications. Patient age varied from 24 to 89, with a mean age of 55
years.

The performance of the classifier on each case type is presented in
Table 3. The classifier performed best on the mass cases, resulting in a
highest 0. 90AUC of 0.60, and an AUC of 0.92. The feature combination resulting
in the highest 0. 90AUC for mass cases included four of the features: mass
margin, calcification morphology, associated findings, and age. At 98%
sensitivity, the classifier would correctly spare 209 (51%) benign mass
lesions while misclassifying 5 (2%) malignancies. The Round Robin ROC curve
for mass cases is presented in Figure 1A, while the partial ROC curve (above
90% sensitivity) is shown in Figure lB. Note that the values presented in
Table 3 are mean values from the bootstrap evaluation, and not direct values
from the Round Robin curve.

Table 3: Performance summary of LRb on each lesion type from Duke University.

Case Type A, ± STD .,•o ± STD TPF at Number of benign TPF at Number of benign
FPF=0.95 cases spared at FPF=0.98 cases sparcd at

FPF=0.95 FPF--0.98

Masses 0.92 ± 0.01 0.60 ±0.05 0.34 ± 0.05 274 (66%) 0.49 ± 0.13 209(51%)

Calcifications 0.64 ± 0.02 0.16 ± 0.03 0.83 ± 0.03 73 (17%) 0.88 ± 0.03 50 (12%)

Other 0.76 ± 0.04 0.33 ±0.10 0.64 ± 0.12 30(36%) 0.78 ± 0.13 18(22%)

1 1...... , . . . .

0.6 . ....... ... 0..... ..........

0 9 ..... ..... .. .. .. .. .. .... .... .. ...... .. .."o oLL

0)0.

0 0.. 0.4 .. 0.8 .B) 0,94

) Calcifications Fs Msse
Igt 0.2 .: A . .O cOtherf 0.92 Calcifications .

Other

0 0,9.9 ... .....
A) 0 0.2 0.4 0.6 0.8 1 B) 0.2 0.4 0.6 0.81

False Positive Fraction (FPF) False Positive Fraction (FPF)

Figure 1: A) ROC curves for masses, calcifications, and other cases.
B)Partial ROC curves for masses, calcifications, and other cases.
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The classifier performed substantially better on the mass cases than on
the calcifications. The AUC for the mass cases was 0.92, while the
calcification cases had an AUC of only 0.64. The difference in performance is
also very evident in the high sensitivity region of the ROC curve. At 98%
sensitivity, the classifier would spare 51% benign mass cases, while only 12%
benign calcifications would be spared at this sensitivity.

Task 3b Evaluation on cases from Duke University and University of
Pennsylvania."

The data set of mammographic mass cases from the Duke University
Medical Center consisted of 645 biopsy cases. Of these, 232 were malignant
and 413 proved benign at biopsy. Another data set from the University of
Pennsylvania Medical center consisted of 496 mammographic mass cases. In this
subset, there were 296 malignant cases, and 200 benign. For this evaluation,
each case in the database was represented by two features. One of the
features was mass margin, described in accordance with the BI-RADSTM lexicon.
The description of mass margin was assigned by experienced mammographers at
the time of the decision to biopsy. Mass margin can range from "well
circumscribed" to "spiculated." The other feature used was patient age, which
is a well known risk-factor for breast cancer.

In order to evaluate the performance of the classifier on the data from
the two medical centers, we used four evaluation approaches. (A) The LRb was
trained and tested on Duke data, (B) LRb was trained on Pennsylvania data,
tested on Duke data, (C) LRb was trained and tested on Pennsylvania data, and
(D) LRb was trained on Duke data, tested on Pennsylvania data.

Since several methods exist for training and testing on the same data,
approach A was further separated into approaches Al and An. In approach Al, a
leave-one-out sampling approach was applied to evaluate the performance of
the Duke-trained classifier on the Duke data set. Each case from the Duke set
was used as a test case, while the remainder of the Duke cases was used as
the training set. This was repeated over all cases, until all cases had been
used as a test case. The ROC curve was produced by thresholding the
likelihood ratio values of the test cases. In approach An, the classifier was
trained and tested on all cases. This produced a consistency (resubstitution)
curve for the Duke set. A similar procedure was followed for C, for training
and testing on the Pennsylvania data set. The leave-one- out approach
approach is referred to as Cl, and the consistency approach is referred to as
Cn. For approach D (cross-training across different institutions) all of the
Duke data was used for training the classifier, and then all of the
Pennsylvania data was used for testing. In a similar fashion for approach B,
all of the Pennsylvania data was used for training the classifier, and then
all of the Duke data was used for testing performance. In each situation, all
of the training dataset was used to establish the threshold that would spare
98% of the benign cases from the training dataset. For approach D, the 98%
sensitivity threshold from approach An was used. This means that the
threshold was established using all of the Duke cases (the consistency
curve). This threshold was then applied to the ROC curve of the test set.
From this ROC curve, the new resulting sensitivity and specificity on the
test were acquired. These results are presented in Table 4. Similarly for
approach B, the 98% sensitivity threshold from approach Cn was used to
establish the new sensitivity and specificity on the test set.

Testing the trained classifier on the Duke dataset (Approaches A-B) When the
Duke dataset was used for training and testing the classifier in a leave-one-
out fashion, the AUC was 0.91 ± 0.01 (Table 4, Figure 2). When the Penn
dataset was used for training the classifier, the performance of the
classifier tested on the Duke set was again 0.91 ± 0.01. While no difference
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was observed in the AUC, there was a small difference in the PAI, above the
90% sensitivity level. The PAI for testing and training on Duke was 0.59 ±
0.05, while it was only 0.53 ± 0.07 for training on Penn and testing on Duke.
The PAI was lower for testing and training on data across different medical
centers, while the AUC remained the same. The difference in PAI, was not
statistically significant (p=0.57).

Table 4: Performance of classifier on Duke vs. Pennsylvania data.

Approach Training Dataset Testing Dataset AIJC PM (above 90% Benign Cases
sensitivity) Potential ly Spared at 98%

Sensitivity

A, Duke Duke (leave-one-out) 0.91 ± 0.01 0.59 ± 0.05 209 (51%)

A, Duke Duke (consistency) 0.94 ± 0.01 0.71 ± 0.03 264 (64%)

B Pennsylvania Duke 0.91 ± 0.01 0.53 ± 0.07 see Table 2

C' Pennsylvania Pennsylvania (leave- 0.85 ± 0.02 0.30 ± 0.07 28 (14%)
ole-0ut)

C' Penn Penn (Consistency) 0.90 ± 0.01 0.52 ± 0.06 78(39%)

D Duke Pennsylvania 0.85 ± 0.02 0.29 ± 0.07 see Table 2

Testing the trained classifier on the Pennsylvania dataset (Approaches C-D)
When the Pennsylvania dataset was used for training and testing the
classifier, the leave-one-out AUC was 0.85 ± 0.02. When the classifier was
trained on the Duke dataset, and tested on the Pennsylvania dataset, the AUC
was also 0.85 ± 0.02. Therefore, the performance of the classifier tested on
the Pennsylvania data was the same in terms of AUC, regardless of which
dataset was used for training. While no difference was observed in the AUC,
there was a small difference in the PAI. The PAI for testing and training on
the Pennsylvania data was 0.30 ± 0.07, and 0.29 ± 0.07 for training on the
Duke data. This difference was also not statistically significant (p=0.99).

Table 5: Performance of the cross-trained classifier using 98% sensitivity
threshold established on the training data.

Approach Training Dataset Testing Dataset Actual f Benign Cases Potentially
Resulting Spared from Biopsy
Sensitivity

B Pennsylvania Duke 98% 189 (46%)

D Duke Pennsylvania 92% 104 (52%)

After training the classifier in a leave-one-out fashion on the Pennsylvania
data, the LRb could potentially spare from biopsy 14% of the Pennsylvania
benign lesions. Training on the Duke dataset and using the 98% threshold
established on the Duke set would result in 92% sensitivity on the
Pennsylvania data set. This sensitivity was also the next highest sensitivity
point after 100% on the Pennsylvania curve. Using the classifier at this
sensitivity would potentially obviate 46% benign cases from the Pennsylvania
data set. These results suggest that while it is possible to train and test
on data from different medical centers, it may be more beneficial to train
and test on data from the same medical center.
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Figure 2: Performance of the classifier tested on on A) data from Duke
University, and B) data from University of Pennsylvania.

It is difficult to ascertain why the performance of the classifier was

lower on testing on the Pennsylvania data than on the Duke data. Given that
the performance remains comparable regardless of which dataset is used for
training, it is likely these databases do not contain more information for
improvement of results. It is also difficult to ascertain why training on

the Duke dataset and establishing the 98% sensitivity threshold did not
produce equally high sensitivity in the testing on the Pennsylvania set. The

threshold established on the Duke set resulted in a sensitivity drop to 92%
on the Pennsylvania dataset. This sensitivity was also the next highest
sensitivity point after 100% on the Pennsylvania curve. Since these results
did not involve resampling of the inputs, more research is needed to examine
why this drop in sensitivity was observed. However, it is encouraging that
training the classifier on the Pennsylvania database did not result in a
sensitivity drop. The 98% threshold established on the Pennsylvania set
resulted in equally high sensitivity of 98% on the Duke set. The classifier
would still be able to maintain 98% sensitivity on the Duke data at the
training threshold, while potentially sparing from biopsy 46% of the benign
cases.

While the performance of the classifier decreased at high sensitivities
when training on a dataset from another medical center, the overall
performance (AUC) remained the same regardless of which dataset was used for
training. These results suggest that it may be possible to use data from
multiple medical centers to create a global classifier for breast cancer
prediction.

Since the LRB is being developed on a large multi-institutional
database, a very comprehensive evaluation is still needed to evaluate
national trends that could be translated into the clinic.
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Task 4. An independent evaluation has been completed using a subset of the
newly acquired cases. These included just mass cases from one institution.

For this evaluation, 12 we utilized the LRb developed on the database of
670 mass cases 7 . The 670 cases (245 malignant) from one medical institution
were described using 16 features from the BIRADSTM lexicon and patient history
findings. Continued data collection yielded additional 151 (43 malignant)
cases that were previously unseen by the classifier. These new cases were
examined by the developed classifier. Performance evaluation methods included
Receiver Operating Characteristic (ROC), round-robin, and leave-one-out
bootstrap sampling. The performance of the classifier on the training data
yielded an average ROC area of 0.90+/- 0.02, and partial ROC area (0.90AUC)
of 0.60+/-0.06. The exact non-parametric performance on the independent set
of 151 cases yielded a ROC area of 0.88 and 0.90AUC of 0.57. Using a 100%
sensitivity cutoff threshold established on the training data, the classifier
was able to correctly identify 100% of the malignant lesions in the new
independent set, while potentially obviating 26% of the biopsies performed on
benign lesions. In this pre-clinical evaluation, the LRb classifier performed
equally well on the new independent data that was not used for classifier
development. The LRb classifier performance compared favorably with an
artificial neural network. The LRb classifier shows promise as a potential
aid in reducing the number of biopsies performed on benign lesions. More
detail is available. 12 (Manuscript in submission, see Appendix).

In summary, this independent evaluation yielded promising results. Our
continued research has shown that our earlier estimates on the effort
required to complete the clinical evaluation were inadequate. A comprehensive
clinical evaluation will be required to evaluate potential effects in the
clinic given our new extensive data set from multiple institutions.
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KEY RESEARCH ACCOMPLISHMENTS

Task 1. Develop and optimize case representation and database of over 4500
biopsy cases. (Months 1-36)

"* The initial hypothesis has been verified experimentally.
"* A large database of cases has been obtained and adapted for the project.

"* The initial database has been increased by approximately 400 additional
cases from Duke University, 400 cases from Sloan-Kettering Cancer
Institute, 600 cases from the University of North Carolina, and 125 cases
from University of Maryland.

"• Although case acquisition will continue as possible, this task has been
completed as proposed in the Statement of Work.

Task 2. Develop the LR and optimize its subcomponents. (Months 1-24)

"* A first generation classifier has been created and implemented.

"* The mathematical feature representation has been optimized for the current
data and classifier.

"* The N-dimensional density distribution of features has been optimized
using the nearest-neighbor approach and histogram approach.

"* Use of ROC analysis, Round Robin sampling and bootstrap are under
consistent utilization for each classifier version.

"* This task is 50% completed.

Task 3. Evaluate the performance of the LR under various conditions stemming
from the input data. (Months 12-30)

"* Training and testing of the classifier has been performed on cases from
two medical centers.

"* Training and testing of the classifier has been performed on different
lesion types (masses vs. calcifications) from one institution.

"* This task is 20% completed.

Task 4. Simulate and evaluate the use of LR in a clinical setting. (Months
24-36)

"• An independent evaluation on a set of mass cases previously unseen by the
classifier has been carried out with encouraging results.

"* This task is 10% completed.
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REPORTABLE OUTCOMES:

The PI has produced five first-author abstracts/publications since the
original grant submission. These include two conference presentations, one
manuscript in-submission, and two published peer-reviewed manuscripts.
Unfortunately, only the last three publications credited the present grant,
due to late onset of the actual award period (June 2003).

[1] A.O. Bilska-Wolak, C.E. Floyd Jr., Loren W. Nolte, Joseph Y. Lo,
"Application of likelihood ratio to classification of mammographic masses;
performance comparison to case-based reasoning." Med. Phys. 30 (5), May 2003,
pp. 949-958.
[2] A.O. Bilska-Wolak, C.E. Floyd, Jr., Joseph Y. Lo, " Prediction of breast
biopsy outcome using a likelihood ratio classifier and biopsy cases from two
medical centers." SPIE Medical Imaging, Vol. 5032, p. 1386-1391. 2003.
[3] A.O. Bilska-Wolak, C.E. Floyd Jr., Joseph Y. Lo, "Improved sensitivity

for breast cancer classification using a case-based likelihood ratio." MIPS
2003, Durham NC, September 2003.
[4] A.O. Bilska-Wolak, C.E. Floyd Jr, "Tolerance to missing data using a
likelihood ratio based classifier for computer-aided classification of breast

cancer," Phys. Med. Biol. 49, September 2004,pp. 4219-4237.
[5] A.O. Bilska-Wolak, C.E. Floyd Jr., Joseph Y. Lo, "Computer Aid for
Decision to Biopsy Breast Lesions: Pre-clinical Performance Evaluation," (in
submission).

"* Acquisition of a Ph.D. degree by the principal investigator.
"* A large database of BI-RADSTM descriptions for mammography cases from

several medical institutions.

CONCLUSIONS:

A first generation likelihood ratio classifier was developed for breast
biopsy classification verifying the initial hypothesis.

The performance of the classifier was comparable to or better than
other classifiers previously developed for breast biopsy classification.
An independent validation test on 151 cases showed that the classifier was
able to identify 26% of benign mass lesions that should not be sent to
biopsy, while still correctly diagnosing 100% of malignancies. The
performance of the classifier was robust even with some missing case data,
allowing full utilization of all the information present in the databases.

By decreasing the number of benign cases sent to biopsy, the classifier
could be a valuable tool for physicians and ultimately beneficial to
hospitals and patients.
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Prediction of breast biopsy outcome using a likelihood ratio
classifier and biopsy cases from two medical centers.
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ABSTRACT

Potential malignancy of a mammographic lesion can be assessed using the mathematically optimal likelihood ratio
(LR) from signal detection theory. We developed a LR classifier for prediction of breast biopsy outcome of
mammographic masses from BI-RADS findings. We used cases from Duke University Medical Center (645 total, 232
malignant) and University of Pennsylvania (496, 296). The LR was trained and tested alternatively on both subsets.
Leave-one-out sampling was used when training and testing was performed on the same data set. When tested on the
Duke set, the LR achieved a Received Operating Characteristic (ROC) area of 0.91D 0.01, regardless of whether Duke
or Pennsylvania set was used for training. The LR achieved a ROC area of 0.85+ 0.02 for the Pennsylvania set, again
regardless of which set was used for training. When using actual case data for training, the LR's procedure is
equivalent to case-based reasoning, and can explain the classifier's decisions in terms of similarity to other cases.
These preliminary results suggest that the LR is a robust classifier for prediction of biopsy outcome using biopsy cases
from different medical centers.

Keywords: computer-aided diagnosis, likelihood ratio, mammography, breast cancer, masses, biopsy

1. INTRODUCTION

The most widely available, reliable and cost-effective method for the early detection of breast cancer is screening
mammography.' While screening mammography has become a very sensitive method for detecting breast
abnormalities, the diagnostic process of evaluating a suspicious abnormality is not very specific. As many as 70-85%
of breast biopsies are performed on benign lesions. 3 The drawbacks of such potentially unnecessary biopsies include
stress to patient', I and increased cost to patient and clinic, which raise the overall cost of screening.' Biopsy can also
introduce possible distortion on future mammograms, which could make future diagnosis even more difficult.7 The
need to reduce the rate of biopsies performed on benign lesions is well recognized.

The classification of suspicious mammographic lesions by radiologists can be augmented with a second opinion offered
by a computer tool.8, 9 Such computer aids are an inexpensive and a completely non-invasive means of improving the
diagnosis. The improvement in diagnosis for the classification task in mammography would result in the decrease in
the number of biopsies performed on benign lesions. To facilitate this improvement in diagnosis, we have developed a
computer classifier based on the likelihood ratio (LRb) for breast biopsy outcome prediction. The LRb's goal is to
maintain high sensitivity to malignant lesions, while reducing the number of biopsies performed on benign lesions.
The LRb was trained using actual retrospective biopsy cases. The cases were described using the Breast Imaging and
Reporting Data System (BI-RADST ) lexicon,'" which is the standard for mammography reporting.

Since the features used for classification in this study are part of the standard for mammography reporting, it is
conceivable that the one classifier could be used at multiple medical centers. Given a computer-aid trained on data
from one medical center, it is therefore imperative to determine whether the aid could be used in another medical
center. This study aims to initially answer this question by examining the performance of a likelihood ratio classifier
on data from two medical centers.



2. METHODOLOGY

2.1 Data
The database used for this study consisted of non-palpable, proven biopsy cases from two medical institutions. A data
set of mammographic mass cases from the Duke University Medical Center consisted of 645 biopsy cases. Of these,
232 were malignant and 413 proved benign at biopsy. Another data set from the University of Pennsylvania Medical
center consisted of 496 mammographic mass cases. In this subset, there were 296 malignant cases, and 200 benign.

For this study, each case in the database was represented by two features. One of the features was mass margin,
described in accordance with the BI-RADST lexicon.10 The description of mass margin was assigned by experienced
mammographers at the time of the decision to biopsy. Mass margin can range from "well circumscribed" to
"spiculated." The other feature used was patient age, which is a well known risk-factor for breast cancer. 11

2.2 Description of classifier
The likelihood ratio (k) is the optimal detector to determine the presence or absence of signal in noise.1 2-14 The signal
in this application is the potential malignancy. The decision of whether the malignancy is present or not is optimized
by thresholding the likelihood ratio, given by
)(X) = ( X I H)

p (X I Ho)
where p ( X I H, ) is the probability density function (PDF) of the features under the "signal present" H, hypothesis, and
p ( X I Ho ) is the PDF under the "no signal" HK hypothesis. The likelihood ratio is optimal under the assumption that
the PDFs accurately reflect the true densities. For our likelihood ratio-based (LRb) classifier, the PDFs of the features
were estimated using a histogram approach. Since the possible number of findings for BI-RADSTM mass margin is only
five, five bins were used to bin mass margin. This binning approach should work well for mass margin, since it might
be unnatural to average categorical features. A different approach was used to bin age due to the large possible range
of age values. For the age distribution, Scott's rule'", 6 was first used to determine the optimal bin width. The range of
ages within two standard deviations of the mean was divided by the optimal width to determine the bins. The ages
falling outside two standard deviations of the mean were included in extreme left or right bins.

2.3 Evaluation

The performance of the classifier was evaluated using Receiver Operating Characteristic (ROC) analysis. We are most
interested in the performance at high sensitivities, because missing a malignancy is a graver risk to the patient.
Therefore, the main performance metrics included: (1) area under the curve (AUC), which represents average
sensitivity over all specificities, (2) partial area 7 index (PAI) above the sensitivity of 90%, which represents the
performance of classifier at high sensitivities, and (3) the specificity at 98% sensitivity. The last metric helps indicate
how many benign cases could be potentially spared from biopsy while correctly diagnosing 98% of malignancies. This
means that 2% of the malignancies could have potentially delayed biopsy and treatment. Since the cases in our
database are diagnostic mammography cases, and the physician is already aware of the suspicious lesion, it is
conceivable that the performance of the classifier with the physician could be 100% sensitivity.

In order to evaluate the performance of the classifier on the data from the two medical centers, we used four evaluation
approaches. (A) The LRb was trained and tested on Duke data, (B) LRb was trained on Pennsylvania data, tested on
Duke data, (C) LRb was trained and tested on Pennsylvania data, and (D) LRb was trained on Duke data, tested on
Pennsylvania data.

Since several methods exist for training and testing on the same data, approach A was further separated into
approaches A, and An. In approach A,, a leave-one-out sampling approach was applied to evaluate the performance of
the Duke-trained classifier on the Duke data set. Each case from the Duke set was used as a test case, while the
remainder of the Duke cases was used as the training set. This was repeated over all cases, until all cases had been
used as a test case. The ROC curve was produced by thresholding the likelihood ratio values of the test cases. In
approach A., the classifier was trained and tested on all cases. This produced a consistency curve for the Duke set.
A similar procedure was followed for approach C, for training and testing on the Pennsylvania data set. The leave-one-



out approach approach is referred to as CQ, and the consistency approach is referred to as C,.

For approach D (cross-training across different institutions) all of the Duke data was used for training the classifier,
and then all of the Pennsylvania data was used for testing. In a similar fashion for approach B, all of the Pennsylvania
data was used for training the classifier, and then all of the Duke data was used for testing performance. In each
situation, all of the training dataset was used to establish the threshold which would spare 98% of the benign cases
from the training dataset. For approach D, the 98% sensitivity threshold from approach A. was used. This means that
the threshold was established using all of the Duke cases (the consistency curve). This threshold was then applied to
the ROC curve of the test set. From this ROC curve, the new resulting sensitivity and specificity on the test were
acquired. These results are presented in Table 2. Similarly for approach B, the 98% sensitivity threshold from
approach C, was used to establish the new sensitivity and specificity on the test set.

2.4 Relationship to case-based reasoning
Case-based reasoning (CBR) is an artificial intelligence approach for solving problems based on the premise that
similar problems have similar solutions.1" The CBR is based on the human learning process - learning by experience.
A CBR system can illustrate which cases from a database were found similar to a new case, thus presenting compelling
justification for the system's diagnostic outcome.19 This property is important for potential clinical use, since
physicians and patients are uncomfortable receiving a diagnostic decision without an explanation behind it. In our
studies, we have noticed that the CBR is a likelihood ratio based algorithm. The CBR in effect uses similarity metrics
to approximate and smooth the feature distributions. From this relationship, we have been able to realize that many
likelihood ratio based classifiers can also explain their reasoning in terms of similar cases. This can make the LRb a
more attractive classifier for a real clinical situation, since the classifier can explain its diagnostic decision to a
physician. The LRb can return to the user cases that were found similar to the case in question, their mammograms,
BI-RADST findings, and other relevant information, along with the diagnostic decision.

3. RESULTS

3.1 Testing the trained classifier on the Duke dataset (Approaches A-B)
When the Duke dataset was used for training and testing the classifier in a leav'e-one-out fashion, the AUC was 0.91 ±
0.01 (Table 1). When the Penn dataset was used for training the classifier, the performance of the classifier tested on
the Duke set was again 0.91 ± 0.01. While no difference was observed in the AUC, there was a small difference in the
PAl, above the 90% sensitivity level. The PAT for testing and training on Duke was 0.59 + 0.05, while it was only
0.53 ± 0.07 for training on Penn and testing on Duke. The PAl was lower for testing and training on data across
different medical centers, while the AUC remained the same. The difference in PAM, was not statistically significant
(p=0.57).

Table 1: Performance of the classifier on Duke and Pennsylvania datasets.
Approach Training Dataset Testing Dataset AUC PAl (above 90% # Benign Cases

sensitivity) Potentially Spared at 98%
Sensitivity

A, Duke Duke (leave-one-out) 0.91 ± 0.01 0.59 ± 0.05 209 (51%)
A. Duke Duke (consistency) 0.94 ± 0.01 0.71 ± 0.03 264 (64%)
B Pennsylvania Duke 0.91 ± 0.01 0.53 ± 0.07 see Table 2
C, Pennsylvania Pennsylvania (leave- 0.85 ± 0.02 0.30 ± 0.07 28 (14%)

one-out)
C, Penn Penn (Consistency) 0.90 ± 0.01 0.52 ± 0.06 78 (39%)

D Duke Pennsylvania 0.85 ± 0.02 0.29 ± 0.07 see Table 2

To examine the potential clinical benefits, we examined the number of benign cases that could be spared from biopsy.
Using the leave-one-out classifier trained on the Duke dataset (at 98% sensitivity) could potentially spare from biopsy
51% of the benign cases from the Duke dataset. Training on the Pennsylvania dataset and using the 98% threshold



established on the Pennsylvania set would also result in 98% sensitivity on the Duke set, and potentially obviate 46%
benign cases from Duke University. It would be slightly more beneficial to train and test on data from the same
medical institution, since the LRb could potentially obviate 51% versus 46% of the benign biopsies at the 98%
sensitivity level.

Table 2: Performance of the cross-trained classifier using 98% sensitivity threshold established on the training data.
Approach Training Dataset Testing Dataset Actual # Benign Cases Potentially

Resulting Spared from Biopsy
Sensitivity

B Pennsylvania Duke 98% 189 (46%)
D Duke Pennsylvania 92% 104 (52%)

3.2 Testing the trained classifier on the Pennsylvania dataset (Approaches C-D)
When the Pennsylvania dataset was used for training and testing the classifier, the leave-one-out AUC was 0.85 ± 0.02.
When the classifier was trained on the Duke dataset, and tested on the Pennsylvania dataset, the AUC was also 0.85 ±
0.02. Therefore, the performance of the classifier tested on the Pennsylvania data was the same in terms of AUC,
regardless of which dataset was used for training. While no difference was observed in the AUC, there was a small
difference in the PAL. The PAI for testing and training on the Pennsylvania data was 0.30 + 0.07, and 0.29 ± 0.07 for
training on the Duke data. This difference was also not statistically significant (p=0.99).

After training the classifier in a leave-one-out fashion on the Pennsylvania data, the LRb could potentially spare from
biopsy 14% of the Pennsylvania benign lesions. Training on the Duke dataset and using the 98% threshold established
on the Duke set would result in 92% sensitivity on the Pennsylvania data set. This sensitivity was also the next highest
sensitivity point after 100% on the Pennsylvania curve. Using the classifier at this sensitivity would potentially obviate
46% benign cases from the Pennsylvania data set. These results suggest that while it is possible to train and test on
data from different medical centers, it may be more beneficial to train and test on data from the same medical center.
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Figure 1: Performance of the classifier tested on on A) data from Duke University, and
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4. DISCUSSION

The high performance of the LRb classifier using only two of the findings suggests that a lot of information is present
in the age distribution, and in the mass margin finding as assigned by mammographers.
It is difficult to ascertain why the performance of the classifier was lower on testing on the Pennsylvania data than on
the Duke data. Given that the performance remains comparable regardless of which dataset is used for training, it is
likely these databases do not contain more information for improvement of results.

It is difficult to ascertain why training on the Duke dataset and establishing the 98% sensitivity threshold did not
produce equally high sensitivity in the testing on the Pennsylvania set. The threshold established on the Duke set
resulted in a sensitivity drop to 92% on the Pennsylvania dataset. This sensitivity was also the next highest sensitivity
point after 100% on the Pennsylvania curve. Since these results did not involve resampling of the inputs, more
research is needed to examine why this drop in sensitivity was observed. However, it is encouraging that training the
classifier on the Pennsylvania database did not result in a sensitivity drop. The 98% threshold established on the
Pennsylvania set resulted in equally high sensitivity of 98% on the Duke set. The classifier would still be able to
maintain 98% sensitivity on the Duke data at the training threshold, while potentially sparing from biopsy 46% of the
benign cases.

While the performance of the classifier decreased at high sensitivities when training on a dataset from another medical
center, the overall performance (AUC) remained the same regardless of which dataset was used for training. These
preliminary results suggest that it may be possible to use data from multiple medical centers to create a global classifier
for breast cancer prediction.

The LRb remains an attractive classifier, since it can result in optimum performance and can explain reasoning behind
its decision in terms of similar cases. The LRb can return to the user cases that were found similar to the case in
question, their mammograms, BI-RADST findings, and other relevant information, along with the diagnostic decision.
Furthermore, the performance of the classifier remained comparable regardless of which database was used for
training. These preliminary results suggest that the LRb is a robust classifier for prediction of breast biopsy outcome
using biopsy cases from different medical centers.
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Abstract
While mammography is a highly sensitive method for detecting breast tumours,
its ability to differentiate between malignant and benign lesions is low, which
may result in as many as 70% of unnecessary biopsies. The purpose of this
study was to develop a highly specific computer-aided diagnosis algorithm to
improve classification of mammographic masses. A classifier based on the
likelihood ratio was developed to accommodate cases with missing data. Data
for development included 671 biopsy cases (245 malignant), with biopsy-
proved outcome. Sixteen features based on the BI-RADSTM lexicon and
patient history had been recorded for the cases, with 1.3 ± 1.1 missing feature
values per case. Classifier evaluation methods included receiver operating
characteristic and leave-one-out bootstrap sampling. The classifier achieved
32% specificity at 100% sensitivity on the 671 cases with 16 features that had
missing values. Utilizing just the seven features present for all cases resulted in
decreased performance at 100% sensitivity with average 19% specificity. No
cases and no feature data were omitted during classifier development, showing
that it is more beneficial to utilize cases with missing values than to discard
incomplete cases that cannot be handled by many algorithms. Classification of
mammographic masses was commendable at high sensitivity levels, indicating
that benign cases could be potentially spared from biopsy.

1. Introduction

Mammography is the most readily available modality for the early detection of breast cancer.
Clinical success of mammography is due to its high sensitivity to malignant lesions combined
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with cost-effectiveness. Several comprehensive studies have demonstrated the efficacy of
screening mammography on the general population of asymptomatic women (Tabar et al
2001, Morimoto et a! 2000, Miller et al 1992). While screening mammography concentrates
on the detection of abnormalities in the general female population, diagnostic mammography
concentrates on classifying encountered abnormalities and recommending an appropriate
course of medical action.

The high sensitivity of screening mammography is compromised by its low specificity
to benign lesions which often appear mammographically similar to malignant lesions. This
results in approximately 70% of biopsies (Kopans 1992, Meyer et al 1990) performed on
benign lesions. The negative effects of potentially unnecessary biopsies include pain,
anxiety, altered cosmetic appearance and monetary cost (Helvie et al 1991, Dixon and John
1992). Biopsy can also introduce distortion on future mammograms, which could complicate
diagnosis in the future. Regular screening for women starting at the age of 40 is recommended
by the American College of Radiology (ACR). Approximately 64 million women in the Unites
States are above the age of 40 (US Census Bureau 2001). Therefore, potentially unnecessary
biopsies might be performed on millions of women (Kaye et al 1994). It would be beneficial
both to individuals and society as a whole to reduce the number of biopsies performed on
benign lesions.

Radiologists' diagnostic performance in mammography can be enhanced by computers
providing a rapid and accurate second opinion using appropriate algorithms (Jiang et a 2001,
Doi et a 1999). Such algorithms are a potentially noninvasive, low-cost solution to improving
the diagnosis. Currently, mammography is still under-utilized by the female population
(Michaelson et al 2002) and the number of dedicated-breast imaging radiologists is often
unsatisfactory. If the utilization of mammography improves, screening resources are likely
to become more inadequate in the future. This increased need for improved mammographic
screening can be partially alleviated by computer-aided diagnosis (CAD).

CAD refers to the utilization of a computer tool by a physician to help in medical
diagnosis. CAD for breast cancer generally pertains to the use of computers by dedicated
breast-imaging radiologists to assist in detection and/or classification of suspicious lesions
present on mammograms. These lesions include masses, calcifications and architectural
distortions. Various CAD algorithms have been applied to classification (Hadjiiski et al
2001, Lo et al 1999, Veldkamp et a 2000) and detection (Gavrielides et al 2000, Chang et al
2001) of suspicious lesions. CAD for detection refers to identifying suspicious lesions on
mammograms, and classification refers to deciding whether the suspicious lesion is malignant
or benign.

Physicians describe mammographic lesions using the standard lexicon from the ACR
Breast Imaging and Data Reporting System (BI-RADSTM) (BI-RADS 1998). Information
from the BI-RADSTm lexicon has been used previously to improve classification of breast
cancer (Floyd et a 2000) by employing ordered rankings that were assigned to the categorical
descriptions of BI-RADSTM. However, the best way of encoding categorical features
into mathematical representation for use by a classifier is not obvious and an inadequate
implementation can have an adverse effect on performance. This problem will be addressed
by this study.

Another problem that is frequently encountered during the development of a CAD tool for
medical purposes is the lack of complete data. This lack of complete data may present itself
an inadequately small number of cases for development, or a proportion of cases that have
missing values and are thus unsuitable for most classification algorithms. In mammography,
for example, an algorithm may be developed that employs knowledge of the patient hormone-
therapy history that is not part of the BI-RADSTM lexicon. Hormone-therapy history might not
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have been collected for certain cases in the available database. If one requires the algorithm
to use hormone-therapy history, the lack of this information for some cases can reduce the
total number of cases available for the development of the computer-aid. This lack of values,
leading to a reduced number of cases, can prevent one from utilizing all information available
in the database.

In this investigation, we present an improvement to a previously developed classifier for
breast cancer prediction. While the initial classifier was developed using cases with complete
data, the present classifier was developed to accommodate cases with missing values. This
allowed us to incorporate more features from patient medical history and also more cases. The
utilization of all information in the database produced a more sensitive and specific classifier.
We demonstrate the performance of the classifier on a very large data set, and exemplify its
robust performance with the missing values. We achieve excellent performance for breast
biopsy prediction at the 100% sensitivity level.

2. Methods

2.1. Description of database

The BI-RADSTM data were collected as part of standard clinical practice at Duke University
Medical Center, in accordance with institutional safety review boards. The data were compiled
within several discontinuous time periods between 1991 and 2000, but consecutively within
each time period. The original data consisted of 1530 non-palpable biopsy-proved cases. Of
these, 61 cases were removed because it was not possible to confirm that they were non-
palpable, leaving 1469 cases (512 malignant). In this study, only mass cases were examined.
Mass cases were defined as cases that had a mass and any other findings, such as associated
calcifications or architectural distortions. There were 671 mass cases in this database, and
245 proved to be malignant at biopsy. Biopsy outcome for each case was obtained from the
histopathological analysis.

The cases in the database were represented by features based on the BI-RADSTM lexicon
and patient history findings. These 16 features included mass margin, mass shape, mass
density, mass size, calcification morphology, calcification distribution, calcification number,
associated findings, architectural distortion, special findings and patient age. The previously
unused features were: change from prior mammogram, hormone-therapy history, breast side,
quadrant location and menopausal status. The possible descriptors (findings) for each feature
are listed in table 1. (Nomenclature: note that mass margin is referred to as a 'feature', while
microlobulated is referred to as 'finding' or 'feature value'.)

Many of the cases present in the database had some feature values unrecorded. Please
note the difference between unrecorded features, and the absence of findings for a specific
case. For example, a suspicious mass might be located on a mammogram without associated
calcifications. Therefore, the calcification findings will say 'no calcifications'. However,
if a suspicious mass does have calcifications, and for unknown reasons the calcification
morphology was not recorded, then the value for that feature is missing. It is then specified
as 'no information' finding for calcification morphology. For the 671 cases, 1.3 :E 1.1 feature
values were missing on average per case (table 2). Each feature had a different rate of scarcity
in the data, and only seven features were present for all 671 cases. The seven features recorded
for all the 671 cases included mass margin, calcification number, special findings, associated
findings, patient age, breast side and architectural distortion. All 16 feature values were
recorded for only 225 cases (81 malignant) in the database. Unrecorded feature values will be
henceforth referred to as 'missing'.
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Table 1. Mammographic features and their findings as used by the classifiera.

Feature Finding Feature Finding

(1) Patient age Years (9) Calcification number No calcs
<5

(2) Mass margin No mass 5 to 10
Well circumscribed >10
Microlobulated No info
Obscured (10) Associated findings None
Ill-defined Skin lesion
Spiculated Haematoma
No info Post-surgical scar

(3) Mass density No mass Trabecular thickening
Fat-containing Skin thickening
Low density Skin retraction
Isodense Nipple retraction
High density Axillary adenopathy
No info Architectural distortion

(4) Mass shape No mass No info
Round (11) Special None
Oval cases Intrammamary lymph node
Lobular Assymetric breast tissue
Irregular Focal assymetric density
No info Tubular density or

(5) Mass size mm solitary dilated duct
No info

(6) Menopause Pre-menopausal (12) Quad Posterior
Post-menopausal Central
No info LIQ

(7) Calcification No calcs LOQ
distribution Diffuse UIQ

Regional UOQ
Segmental Axillary tail
Linear Subareolar
Clustered No info
No info (13) Change from prior No change

(8) Calcification No calcs New lesion
morphology Milk of calcium-like Qualitative change

Eggshell or rim Quantitative change
Skin No info
Vascular (14) Architectural None
Spherical or lucent-centred distortion as main finding Present
Suture No info
Coarse ('popcorn') (15) Hormone use No hormone use
Large rod-like Hormones (such as BCP
Round oestrogen, progesterone)
Dystrophic No info
Punctate (16) Breast side Left
Indistinct Right
Pleomorphic No info
Fine branching
No info

a The percentages of missing values are as follows: (1) 0%, (2) 0%, (3) 2%, (4) 1%, (5) 4%, (6) 40%, (7) 2%, (8) 1%,

(9) 0%, (10) 0%, (11) 0%, (12) 3%, (13) 14%, (14) 0%, (15) 40% and (16) 0%.

2.2. The likelihood ratio based algorithm

Given features describing the presence of a suspicious lesion on a mammogram, one has
to decide whether or not a malignancy-a signal-is present. The optimal detector to
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Table 2. Number of cases in database with respect to number of features and missing values.
Please note that B, C, and A 7 are actually subsets of A, and that A = B + C.

Number of Number of Number of missing
Set ID cases features feature values per case

A 671 16 1.3 ± 1.1
A 7  671 7 0

B 225 16 0

C 446 16 1+

determine the presence or absence of a signal in noise is the likelihood ratio (VanTrees
1968, McDonough and Whalen 1995, Egan 1975, Kupinski et al 2001, Barrett et al 1998).
The likelihood ratio X is optimal under the assumption that full knowledge of the statistical
properties of the data is known. The likelihood ratio is also referred to as the ideal observer.

The hypothesis that the signal is present is the Hl hypothesis, and the 'no signal' or
null hypothesis is referred to as H0. The decision whether the signal is present or absent is
optimized by thresholding the likelihood ratio X(V),

X(V) - p(VIHI)

p(VlHo)

where the p(VIHI) represents the probability density function (PDF) of the available data V
under the 'signal present' hypothesis, and p(V I Ho) represents the PDF of the available data
under the 'no signal' hypothesis. In this study, the signal to be detected is the malignancy
of the breast lesion. Therefore, we can use available descriptions for malignant biopsy cases
to represent the H, distribution, and the descriptions for benign biopsy cases to represent the
H0 distribution. The next challenge concerns the logistics of the representation of the H0

and H, feature distributions for the biopsy cases. The biopsy cases present in our database
were described with BI-RADSTM lexicon, which is a collection of categorical descriptives
for features (table 1). In past studies, the categorical descriptives for each feature were
arranged in order of increasing risk of malignancy, and a ranking scale was assigned (Lo et al
1999, Floyd et al 2000, Bilska-Wolak and Floyd 2002a). This scale had been established
in consultation with physicians, and has also been used with artificial neural networks
(Lo et al 1999), linear discriminant analysis (Markey et al 2002), case based reasoning
(Floyd et a12000, Bilska-Wolak and Floyd 2002a), and constraint-satisfaction neural networks
(Tourassi et at 2001). While the ranking approach is practical and has resulted in commendable
performance, it is possible that better performance can be achieved without the use of a classifier
that depends on a numerical or ranking scale. This is true because while one finding might be
considered more malignant than another, real-life performance and database content might not
be reflected in the ranking assignments. For example, physicians might consider dystrophic
calcifications more at risk to be malignant than round, and thus designate a rank of 10 to
dystrophic calcifications, and 9 to round calcifications. However, physicians might assign
round more often to malignant calcifications than dystrophic, thus behaving in opposition to
their scale. Any classifier that utilizes averaging or interpolation of findings, for example,
will be dependent on this scale/ordering of the categorical features, and may be affected
unfavourably.

For our likelihood ratio based algorithm, we have chosen to represent the categorical
features as discrete histogram distributions. Such nonparametric models can be very effective,
and also reduce the risk of misinterpreting the data (Scott 1992). Conversely, parametric
models often interpolate the data, yet it might be unnatural to average categorical feature
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findings. Given the small number of findings for the BI-RADSTm features, we can represent
the densities as histograms with fixed bins. This will allow the findings of a feature to remain
separate and unaffected by ordering. For example, since mass shape has only four possible
descriptions, four bins will be designated for each finding. We have also introduced a fifth
bin, to represent the lack of information, or 'no info'. Therefore, the mass shape histogram
has five possible bins. A different strategy was chosen for the continuous findings, such as
age and mass size. Creating a histogram for these is slightly more complex due to the large
number of possible values. We used Scott's rule (Scott 1992, 1979, Wand 1995) to determine
the optimal histogram bin width h. Let a represent the standard deviation and n the number
of available observations. The optimal bin width h is then,

h = 3.5 x or x n-1/3.

The interval within two standard deviations of the mean was subdivided by the bin width.
Observations falling outside the two standard deviations were included in extreme right
and left bins. For the mass size distribution, this resulted in nine bins. An extra bin
indicating 'no information' was also added, resulting in ten bins for the mass size distribution.
Essentially, in this set-up the encoding of categorical (BI-RADSTM) findings matters a
little. The only fact of importance is that each finding remains a separate category. We
eventually encode the findings as numbers in the algorithm, because it is easier for a
computer program to use them, but the values we choose can be any number. This can be
accomplished due to the way we have defined our distributions and how the likelihood ratio is
computed.

While it would be ideal to compute thef-variate distribution histogram of all the features
for the likelihood ratio based (LRb), populating the 16-dimensional feature space presents
a problem: an extremely large number of cases would be needed to provide an adequate
representation of the 16-dimensional space. One solution to this problem consists of using
an assumption of feature independence and creating separate likelihood ratio classifiers for
each feature. By merging the outputs from the individual feature classifiers, the final classifier
can then be created. The final merged classifier is not a true likelihood ratio classifier,
but strictly speaking, is a likelihood ratio based classifier. Our merging method consisted
of summing over all individual likelihood ratios. We have found this to work better than
multiplication or any other merging method. This result may suggest that summing reduces
the influence of extreme likelihood ratio values better than multiplication. These very small
or very large values may be the result of a small number of cases, potentially suggesting less
accurate local PDF estimation and thus less accurate likelihood ratio estimation. (Note that
averaging is equivalent to summing, since it is a monotonically increasing transformation of
the likelihood ratio.) The merging of individual features implies feature independence, but
the assumption appears to work well for our purpose. For example, the linear correlation
coefficient between features for all cases is very low (less than 10.21) for majority of feature
pairs, implying low (linear) interdependence of features. Furthermore, each feature distribution
is estimated using all available training cases, implying a more robust PDF for each feature.
The benefit of the summing method has been also shown in other empirical studies. For
example, Kittler et al (1998) found that the classifier combination rule developed under most
restrictive assumptions-the sum rule-outperformed other classifier combination schemes.
Zheng et al (2001) found that averaging independent observers (neural networks) improved
performance for breast mass detection. Swensson et al (2000) found gains in performance
when averaging radiologists' ratings of abnormality. In effect, the summing method suggests
that the more high-malignancy-risk features describe a specific case, the more likely that the
case will be predicted as malignant by the LRb.
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2.3. LRb versus other classification algorithms for biopsy prediction

Many classifiers for breast biopsy classification based on BI-RADSTM are likely to have
poor performance because of a dependence on the number scale assigned to categorical
features. As mentioned earlier, the number scale might not be accurately reflected
in the rankings. A classifier often employed in CAD is Fischer's linear discriminant.
Fischer's linear discriminant is actually a likelihood ratio classifier with feature distributions
estimated using the multivariate normal assumption with equal covariance matrices. Since
the multivariate normal assumption might not accurately represent the data, and is
dependent on the number scale assigned to features, it may not be appropriate to use
this assumption/classifier. Using the multivariate assumption may prove particularly
difficult when encoding categorical features. It is also difficult in practice to encode 'no
information' into mathematical representation for multivariate normal assumptions. Other
classifiers such as neural networks may also be non-optimal for classifying categorical
features since such classifiers also depend on the number scale/rankings assigned to feature
findings.

Most classification algorithms require the presence of all feature values for the functioning
of the algorithm. Therefore, the lack of certain feature values means that parts of the data
have to be excluded from algorithm development. Lack of data may be a mere error or
omission during the collection process. However, feature values may also be absent due to the
physicians' uncertainty, indicating a pattern of assignment. In this situation, lack of a feature
value could actually provide useful information. Furthermore, decreasing the number of
cases available for algorithm development means that fewer cases are available to estimate the
probability density functions of features. Fewer cases could result in less accurate estimation
of the probability density functions of the features, which could result in poorer performance.
Both of these problems can be circumvented by utilizing a classifier, such as the LRb, that can
utilize cases with missing values.

Other methods for dealing with missing data are available. An example method of dealing
with missing data is to simply substitute the missing value by the mean of all known values
of the variable (Beale and Little 1975, Little and Rubin 2002). This simple method is an
often practically utilized method of dealing with missing data. This method is compared with
'missing' information category approach for one feature in the results section.

The LRb has other attractive features. As we have defined it in this manuscript, the LRb
has less potential for over-training than many complex classifiers. There is no danger for
over-training in potential feature selection since all the available features are used. There
is also little potential for over-training in defining the distributions. The distributions are
defined using discrete histograms with fixed bins. For the majority of the features (which
are categorical), the number of bins is dependent solely on the number of possible findings
for that specific feature. For the continuous features, the bins are established using Scott's
rule and are also kept fixed. This method also does not use any knowledge of the biopsy
outcome. The separation of categorical findings using bins permits the use of cases that are
lacking features (since we can have a separate 'no information' bin), thus maximizing the
database available for development. The method is also intuitively simple, and employs a
'natural' form of scaling. By 'natural' we mean that feature values that have proportionally
a lot malignant cases are weighted more heavily, as they will have a larger value of the
likelihood ratio and thus will be considered more likely to be malignant. Additionally, since
the actual algorithm is not very computationally intensive, it is possible to train and test the LRb
using advanced validation procedures (vide infra) to conduct a comprehensive performance
evaluation.
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2.4. Classifier performance evaluation

Receiver operating characteristic (ROC) analysis was used to evaluate the performance of the
classifier. The performance at high sensitivities is of foremost interest in biopsy prediction
since missing a malignancy is a greater risk to the patient. The high sensitivity region was not
represented well in the parametric binormal model evaluations. Therefore, the non-parametric
ROC was computed for all evaluations. Since the ROC is computed non-parametrically, we
can obtain simple and clinically useful interpretations of the performance. Points on the non-
parametric ROC curve can be used to obtain values of performance at various sensitivities that
can be translated into performance in terms of numbers of actual cases.

The main performance measures included: (1) area under the curve (AUC), which
represents average sensitivity over all specificities, (2) partial area index (0.90AUC) (Jiang et al
1996) above the sensitivity of 90%, which represents the performance of the classifier at
high sensitivities, (3) specificity at 95% sensitivity, and (4) specificity at 100% sensitivity.
In this application, specificity at 95% sensitivity indicates how many benign cases could be
potentially spared from biopsy while correctly diagnosing 95% of malignancies. Ninety-five
per cent sensitivity indicates that 5% of the malignancies could have potentially delayed
biopsy and treatment. Specificity at 100% sensitivity indicates how many benign cases could
be potentially spared from biopsy while correctly diagnosing 100% of malignancies. The
sensitivity at a fixed FPF is often preferable to the AUC when evaluating a test for a particular
application (Zhou et al 2002).

2.5. Classifier evaluation methods

The two essential developmental stages for any classifier are training and testing. In the training
stage, the classifier learns from the training data. In the testing stage, the classifier evaluates
previously unseen cases, and we examine the resulting performance. Similarly for the LRb
algorithm, the training stage is the computation of the likelihood ratios from mammographic
features of the training cases. The testing stage consists of extracting the merged likelihood
ratio values for given testing cases, and using those likelihood ratio values for computing the
ROC curve.

Several popular approaches exist for testing and training a classifier on a limited set
of data. These include the round robin, k-fold cross-validation, and resubstitution (Kohavi
1995). The bootstrap is another powerful resampling technique (Efron and Tibshirani 1993,
Jain et al 1987), which is rarely described in medical decision making literature. The bootstrap
models the relationship between the true (unknown) distribution, and the sample (our collected
data) by the relationship between the sample and a subsample drawn from our collected
sample (Hand et al 2001). In the classic bootstrap, a population of n cases is resampled with
replacement to form B bootstrap samples of size n each. Because of replacement, each sample
contains some duplication. Each bootstrap sample can be used to compute some statistic (such
as the interquartile range). Averaging the statistic value over all bootstrap samples will give
the mean and variance for this statistic. For the classification task, where both training and
testing data sets are needed, the bootstrap has been applied a little differently. In the simplest
application of the bootstrap, each bootstrap sample in turn is used for training the classifier.
After each training-run, the classifier is tested on the original sample (Efron and Tibshirani
1993) resulting in B estimates of performance. Averaging over all bootstrap samples results
in the final estimate of performance. Similarly to the resubstitution method, this bootstrap
is optimistically biased for classification, since there is repetition of cases in the training and
testing data sets.
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Another, better resampling solution is the leave-one-out bootstrap (Jain et al 1987,
Efron and Tibshirani 1997). Leave-one-out bootstrap is also sometimes referred to as the
E0 estimate in the earlier literature, and is a subcomponent of the of 0.632 bootstrap
(Efron and Tibshirani 1997). In the leave-one-out bootstrap (as applied to calculating, for
example, the classification error rate), the population of n cases is resampled with replacement
to form B bootstrap samples of size n each. Each bootstrap sample is used to train the classifier,
and then the classifier is tested on the instances that do not occur in the bootstrap sample.
The error rate is averaged over all cases and all bootstrap samples to give the final error rate
estimate. Let the data X be represented by xi = [vi, yi], for i = I .... n cases, where vi is the
vector training data, and yi is the class membership. Formally, the error rate E0 is thus,

90 b=LI "Ab Q[yi, ?7X'b(Vi)]

E'=, I4Ab

where Ab is the set of training patterns i that do not appear in the bth bootstrap sample, and
IAb I is the cardinality of Ab. Q is the measure of error between the class membership yi and
the prediction ?7. The prediction q for the data vi is derived from training on bootstrap sample
X*b. Little information exists in the literature about the theoretical accuracy of applying the
leave-one-out bootstrap to ROC analysis. However, leave-one-out bootstrap has been applied
in this fashion. In effect, the leave-one-out bootstrap results in the training on approximately
63% of the data, and testing on 37% of the data, repeated B times (Kohavi 1995). Each
time a slightly different data set is used for testing and training. The ROC performance is
averaged over the B samples. The training and testing data sets for the leave-one-out bootstrap
are mutually exclusive, implying some negative performance bias, at least for such point
estimates as prediction error (Efron and Tibshirani 1997).

In this study, we used the leave-one-out bootstrap when training and testing were
performed on the same subset. When training on one data subset and testing on another
subset, separate bootstrap samples were drawn from each subset. Worthy to note is the
extreme computational demand when applying the bootstrap. For each bootstrap sample, the
classifier has to be retrained anew. This computational overhead is probably the reason why
leave-one-out bootstrap has not been applied extensively in ROC or CAD studies previously.
In order to introduce the leave-one-out bootstrap for CAD, we have applied all five methods
(round robin, resubstitution, cross-validation, bootstrap, leave-one-out bootstrap) to the whole
data subset. To simplify the remaining evaluations, only the leave-one-out bootstrap was used
on the rest of the data subsets.

The aforementioned methods were used for computing the results. All evaluation,
validation and classification methods were custom programmed in MATLAB, and evaluated
on a Sun UltralO workstation.

3. Results

Section 3.1 examines the performance of the leave-one-out bootstrap on the full dataset and
how this evaluation method compares to round robin, cross-validation, resubstitution and
bootstrap methods. In section 3.2, we exemplify the results of using and not using the missing
information content for one feature. In section 3.3, we investigate the leave-one-out bootstrap
performance of the classifier on various subsets of the data that includes or does not include
missing values.
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Table 3. Results of the classifier trained and tested on 671 cases and all 16 features. Some of the
cases have feature values missing.

Specificity at 95% Specificity at 100%

Evaluation type AUC ±- STD 0.9oAUC ± STD sensitivity (%) sensitivity (%)

Round robin 0.91 ± 0.01 0.62 + 0.04 66 26

Cross validation 0.91 ± 0.002 0.61 ± 0.007 66 23

(k = 10)

Leave-one-out 0.91 :L 0.02 0.60 ± 0.06 64 32

bootstrap
Bootstrap 0.92 ± 0.004 0.63 ± 0.01 68 24

Resubstitution 0.93 ± 0.01 0.65 -0.04 70 29

3.1. Comparison of leave-one-out bootstrap to other evaluation methods

In order to demonstrate the performance of the leave-one-out bootstrap with respect to the
round robin, cross-validation, resubstitution and conventional bootstrap, we have executed all
five evaluations on data subset A (defined in table 2). These results for subset A, evaluation on
all 671 available cases and 16 features, are located in table 3. Cross-validation was performed
2000 times, with various random splits of the data. For the bootstrap evaluations, 3000
bootstrap samples were used.

The classifier has high AUC area of 0.91 for round robin, ten-fold cross-validation and
leave-one-out bootstrap. Likewise, all of the three validation methods have similar 0.90AUC.
As expected, the resubstitution and classic bootstrap analysis have the highest AUC and

0.90AUC. Overall, there is no great difference in performance in AUC or 0.90AUC based on
the method. The five methods do differ in the estimates of the standard deviation of the ROC
measurements. The leave-one-out bootstrap appears to be the most rigorous and exhaustive
evaluation, and also has the highest variance. It is likely that the high variance demonstrated
by the bootstrap is reflective of the true variance that would be expected when evaluated on
a new but similar data set, rather than using the more limited four other evaluation methods.
For all five methods, the number of benign cases that could potentially be spared at 100%
sensitivity on average (specificity) is very high. This means that benign cases could be spared
from biopsy, while classifying all malignancies.

A comparable evaluation was carried out on subset B (defined in table 2), with similar
results. These results are omitted for brevity.

3.2. Utilizing 'missing' information category

The leave-one-out bootstrap was applied to the evaluation of a single feature, in order
to exemplify the potential information content in 'missing' information category. The
individual feature used here as an example was hormone-therapy history under two conditions.
Condition 1 was the classification of cases using the LRb as we have described in section 2,
section B (vide supra). The LRb uses the distribution of 'missing' values in the H0 and H,
populations as information. In condition 2, the LRb was also used for classification, though
no information about the distribution of missing values in the training set was used. For
condition 2 the mean value (Beale and Little 1975) of the feature in the training set was
substituted for the missing values in the testing set. The missing data method applied in
condition 2 is a simple, often-utilized in practice method of dealing with missing data. The
results for both conditions are as follows. Condition 1 had AUC = 0.56 -4- 0.03 and PAI =
0.07 ± 0.01. Condition 2 had AUC = 0.53 ± 0.02 and PAl = 0.05 +L 0.004. Both AUC and
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Table 4. Training and testing on various subsets of the data using the leave-one-out bootstrap.
Three thousand bootstrap samples were used for each set-up, and thus each row represents an

average of 3000 retraining runs of the classifier.

Specificity at
Training Testing Senitivity of

Set-up Number of subset subset

number Description features (cases) (cases) AUC 0.90 AUC 95% 98% 100%

1 Train and test 16 A (671) A (671) 0.91 ± 0.02 0.60 ± 0.06 64% 47% 32%
on all available

cases, use all
features

2 Train and test 7 A7 (671) A 7 (671) 0.91 ± 0.02 0.57 ± 0.07 63% 45% 19%

on all cases, using
max number of
filled features

3 Train and test on 16 B (225) B (225) 0.91 ± 0.03 0.61 ± 0.13 66% 44% 44%

cases that have
all feature values

4 Train on cases that 16 C(446) B(225) 0.91±-0.02 0.594-0.08 62% 47% 39%
have at least I value

missing, test on cases
that have no values

missing
5 Train and test on 16 C (446) C (446) 0.90 ± 0.02 0.58 ±- 0.07 62% 50% 34%

cases that have
at least 1 value
missing

6 Train on cases 16 B (225) C (446) 0.88 ± 0.02 0.45 ± 0.07 48% 30% 17%

that have no

values missing, test on

cases that have at least
one value missing

PAl were better for condition 1, using information content in 'missing' information category.
AUC was better in 83% of the bootstrap samples and PAl was better in 99% of the bootstrap
samples. (Evaluation of FPFs at specific sensitivities is not appropriate, due to the small
number of points on the ROC curve.) For hormone-therapy history, it was more advantageous
to utilize the distribution information about the missing values, than to use the mean value
to substitute for missing values. In effect, 'missing' information category contained some
information about the likelihood of malignancy.

3.3. Performance of classifier using allfeatures; effect of missing values

We carried out six different training set-ups for evaluating the performance with and without
missing feature values. The case subsets used are as defined in table 2. The results for
these set-ups are listed in table 4. Please note that 3000 bootstrap samples were used for
each evaluation. Each bootstrap sample corresponds to a new retraining and testing of the
classifier.

3.3.1. Comparison of set-ups I and 2. The first set-up consisted of training and testing the
classifier on all 671 available cases with all available 16 features (data set A, table 2). This
means that some of the cases had feature values missing. Set-up 2 involved training and testing
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Figure 1. Four example ROC curves from the 3000 bootstrap evaluations of set-up 1. Figure 2
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Figure 2. Cumulative ROC over 3000 bootstrap samples for set-up 1, using 671 mass biopsy cases

and 16 features.

on all 671 available cases, but using only the features that had values for all cases (data set A7,
table 2). This means that in set-up 2 only 7 features for all cases were used. Leave-one-out
bootstrap was used for training/testing both set-ups, and the case order from set-up I was also
used in set-up 2 to allow pair-wise comparison of boot sample results.

Figure I shows four examples of ROC curves for four bootstrap samples for set-up 1.
Figure 2 shows the accumulation of all 3000 ROC curves on an image. The darker the pixel
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Figure 3. Histogram of false positive fractions at the 100% sensitivity level for the 3000 bootstrap
runs using all 671 cases. Set-up I (crosshatch bars) represents the runs using all 16 features, even
when some feature values were missing. Set-up 2 (white bars) represents the runs using the seven
features that were present for all 671 cases. On average, set-up 1 has better specificity (lower false
positive fractions) than set-up 2 at the 100% sensitivity level.

on the image, the higher the number of ROC curves that passed through that point. Only the
actual discrete points were plotted on a 100 x 100 grid, with no interpolation between the
points.

Both set-ups 1 and 2 had an AUC of 0.91 ± 0.02. The 0.90AUC was only slightly higher
when using all 16 features (0.60 versus 0.57) rather than 7 features. However, there was a
noticeable difference in performance at the 100% sensitivity level. The histogram of false
positive fractions for the 100% sensitivity level (100%FPF) is shown in figure 3. The two
distributions are clearly different. As shown in figure 3, when using only seven features
(set-up 2), the most often occurring 100%FPF is 97%. This indicates that in many instances,
only 3% of benign cases could potentially be spared from biopsy in set-up 2. For set-up 1, the
most often occurring 100%FPF is around 78%. In figure 4, the differences between the 10•oFPF
of the paired bootstrap samples are plotted. Though no method is available to determine the
statistical significance of this difference, it appears from figure 4 that it is more advantageous
to use all information in the 16 features. Initially, it may have seemed that only the seven
features are sufficient for great prediction and that we can exclude features that are missing
some values. Including all the extra features did not significantly raise AUC or 0.90AUC.
However, the inclusion of the extra features (that have some missing values) does raise the
average specificity at high sensitivities, specifically at the 100% sensitivity level. The 100%
sensitivity level is of importance in this application, since it allows to spare benign cases from
biopsy while correctly identifying all the malignancies.

3.3.2. Comparison of set-ups 3 and 4. The third and fourth set-ups consisted of testing
the classifier on subset B (table 2), 225 cases that had all the feature values. The difference
between set-ups 3 and 4 was again the training data set. Set-up 3 was trained on cases that
had all feature values (subset B), and set-up 4 was trained on cases that had at least one value
missing (subset C, table 2). In order to better evaluate the effect of the training data set, the
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Figure 4. Histogram of paired differences between the false positive fractions (FPFs) of set-ups I
and 2 at 100% sensitivity for 3000 bootstrap samples.

testing cases that were drawn randomly for set-up 3 were used in the same order for testing
in set-up 4. There was no difference in the performance of set-ups 3 and 4: both had an
AUC of 0.91, and similar 0.90AUCs (0.61 and 0.59). Furthermore, there was little difference
in the FPFs at 100% sensitivity as shown in figure 5. Figure 5 shows that the two 100%FPF
distributions are very similar. In set-up 3, 44% of benign cases would be spared on average
at the 100% sensitivity level. In set-up 4, 39% of benign cases would be spared on average.
These results suggest that when the testing data set is not missing values, the training data
set may or may not contain missing values. There will be no need to use or estimate data
for missing values, since there are none in the testing set. Therefore, the performance will
be influenced only by how well the training data represent the testing data, and not by how
missing values are handled. In this comparison, both subsets B and C represent the testing
data subset B equally well, with no difference in performance.

3.3.3. Comparison of set-ups 5 and 6. Set-ups 5 and 6 demonstrate the effect of training
data when the classifier is tested on a data set with missing values (subset C). In set-up 5,
leave-one-out bootstrap is used to train and test the classifier on cases that have at least one
feature value missing (subset C). In set-up 6, the classifier is tested on C, but trained on subset
B, the 225 cases that have all feature values. There was little difference in performance of
set-ups 5 and 6. The AUCs are similar (0.90 + 0.02 versus 0.88 ± 0.02), and the 0.90AUCs
are similar (0.58 ± 0.07 versus 0.45 ± 0.07). However, for 94% of the bootstrap samples, the
PAl was higher for set-up 5, and the AUC was higher for 83% of the samples for set-up 5.
Figure 6 shows the distribution of FPFs at the 100% sensitivity level. The distribution of
100% FPFs for set-up 6 is slightly worse when compared to set-up 5. On average, set-up
5 has higher FPFs at the 100% sensitivity than set-up 6 for 77% of the bootstrap samples.
This difference does suggest that when testing on a database with missing values, it is also
beneficial to train on a database with missing feature values.
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Figure 5. Histogram of false positive fractions at the 100% sensitivity level for the 3000 bootstrap
runs for testing on subset B (225 cases with all 16 feature values). Set-up 3 was trained and tested
on subset B using leave-one-out bootstrap. Set-up 4 was trained on subset C (446 cases that have at
least one value missing), and tested on subset B. There is no apparent difference in the performance
at the 100% sensitivity level.
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Figure 6. Histogram of false positive fractions at the 100% sensitivity level for the 3000 bootstrap
runs for testing on subset C (446 cases that have at least one value missing). Set-up 5 was trained
and tested on subset C using leave-one-out bootstrap. Set-up 6 was trained on subset B (225

cases with all 16 feature values), and tested on subset C. On average, set-up 5 has slightly better
specificity (lower false positive fractions) than set-up 6 at the 100% sensitivity level.
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4. Discussion

The need to reduce the number of biopsies performed on benign findings is a well-recognized
issue in mammography. It is hoped that some of the issues faced by mammography can
be alleviated by computer-aided diagnosis. In this study, we presented a highly specific
computer classifier that could aid physicians by identifying benign lesions that should not be
sent to biopsy. The classifier was developed on a medical database with some incomplete
information.

Lack of values for certain cases in a database can prevent a classification algorithm from
utilizing all the information that is present in the database. For example, in this study we had
four choices in what data we chose for developing a classification tool. (1) Use all available
cases, and use only the features that were recorded for all the cases. In this situation only
seven features would be used. (2) Use all available features, and be limited to only the cases
that have all features (225 cases). In either option 1 or 2, a very large portion of the available
data is discarded. (3) We can compromise between options 1 and 2, and choose some portion
of the cases and features that satisfies our need, resulting with a number of cases between 225
and 671, and the number of features between 7 and 16. Many studies choose this option as
a solution to the missing data problem. We also have used this approach in previous studies
(Floyd et al 2000, Bilska-Wolak and Floyd 2002a). However, there is no standard method for
choosing these peculiar numbers and usually arbitrary empirical techniques are used. This
method also discards some of the data that may contain useful information. (4) We can develop
a classifier that can cope with missing values in input data. For this study, we chose option 4,
and evaluated the classifier's performance with and without missing data.

For our classifier evaluation, we examined six different set-ups for training and testing
on the given database. There are a lot of other set-ups/combinations that could have been
applied in evaluating the effects of missing data and cases. These six set-ups were chosen to
best represent possible effects on performance when faced with a database with some missing
data. Other possible combinations would be interesting to examine, but would not be practical
to include here in one study.

In the six set-ups, regardless of which data subset was used for training, the performance
was almost identical in AUC. The AUC was around 0.90 for all six set-ups. This suggests that
the lack of certain feature values did not substantially affect AUC. The performance was also
very similar in 0.90AUC. The largest difference 0.90AUCs was evident between set-ups 5 and 6,
suggesting that when testing on a database with missing values, it is beneficial to also train on a
database with missing values. A difference in the performance of the six set-ups is also evident
when we examine the distributions of FPFs at the 100% sensitivity level. It is clear from the
distribution of FPFs of set-ups 1 and 2 (figures 3 and 4) that it would be preferable to use 16
features with some missing values, than only 7 features that had all values. Similarly from the
distribution of FPFs, when testing on cases that are missing feature values, the classifier should
also be trained on cases that are missing feature values for best performance. We would like to
reiterate here that the inclusion of cases with missing data is not a trivial problem. Regardless
of whether there is or not a statistical significance of the difference, the merits of the algorithm
are scientifically interesting. The fact that there is no worsening of the results by the inclusion
of cases with some missing data is in itself an important step. Full statistical validation of
whether this difference is statistically significant will have to wait until a more sophisticated
method is available. As evident in the figures, the results appear better than anything done
previously.

The LRb's performance is not higher than previous classifiers' in terms of AUC or 0.90AUC.
However, the LRb does exhibit better performance at high sensitivities than previous classifiers
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on the same data set, especially at the 100% sensitivity level. The 100% sensitivity level is
very desirable in this application, since it allows us to spare benign cases from biopsy while
correctly identifying all the malignancies. With the LRb trained/tested on our whole database
of 671 cases, we can spare 32% of the benign cases from biopsy while correctly identifying
100% of the malignancies. For example, a previous case-based reasoning (CBR) classifier
trained on almost the same case subset achieved an AUC of 0.91 + 0.01 and PAl and 0.60 -
0.05 (Bilska-Wolak and Floyd 2002b). This performance is similar to the LRb performance,
but the CBR was not able to spare any benign cases at the 100% sensitivity level. A neural
network classifier trained on almost exactly same data also achieved an AUC of 0.93 +h 0.01
and PAI of 0.62 ± 0.05 (Markey et al 2002). In the same study, linear discriminant analysis
achieved an AUC of 0.91 ± 0.01 and PAl of 0.61 ± 0.04. The AUC and PAI performances are
similar to the LRb, while the LRb is a much simpler classifier. No values for specificities at
sensitivities were reported for the ANN or discriminant analysis in this study. The LRb appears
able to achieve similar AUC and 0.90AUC, but also high specificity at 100% sensitivity, in
contrast to other classifiers previously utilized for this problem.

The LRb is well suited for training/testing on cases with missing values because it does
not directly depend on the rankings/number scale assigned to feature values. Several of the
commonly used classifiers will have difficulty handling this situation. Ideally, one should
collect all the needed data for all cases. However, situations may and do exist when all data
are not available. In such situations, it appears better to use an informative feature with missing
values for some cases, than not to use the feature at all. A classifier such as the LRb is well
suited for the classification of data with missing feature values.

4.1. Limitations of this study

It is not possible to interpret our results without noting that relatively few feature values
(1.3 ± 1.1) were missing in our database. Also, most of the key features were recorded for
the majority of cases. For example, all cases had mass margin value recorded. There will
exist a point when the lack of data corresponds to such lack of information that no feasible
prediction can be accomplished. However, when only some cases are missing few of the
features, it is possible to utilize the full database and maximize the number of features and
cases. The application of LRb allowed the usage of all the information present in the available
database.

This study did not address the issue of artificially removing data points and evaluating
the performance with continuously decreasing size of data. Rather, it focused on a real-life
situation one might face when obtaining data for classifier development. No imputation of
missing data was performed to fill in the missing data values. It is possible that imputation
would also improve performance especially in situations where no cases with missing data
are available for training. Also, there are many other possible set-ups/combinations, and we
examined just six which were considered most representative.

For breast biopsy prediction, the most desirable operating point is 100% sensitivity. We
would like to operate as close as possible to this point so that we can correctly classify all
malignancies. However, analysis at very high sensitivities should be regarded cautiously due to
difficult statistical character of distribution extremes. The use of the bootstrap allowed a more
thorough investigation of the behaviour of the classifier over a wide range of data. While our
leave-one-out bootstrap visual analysis of specificities at 100% sensitivity can be considered
statistically incomplete, the odds of operating at 100% sensitivity with good results will be
higher when we formulate such higher goals. Classifier performance at 100% sensitivity is a
clinically significant measure of performance for breast biopsy classification.
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No feature selection was applied in this study. It is possible that feature selection might
improve the performance of the classifier. It is also possible that no improvement will be
observed, or simply that identical performance will be achieved with fewer features. In this
study, we demonstrated that excellent performance for a LRb classifier can be achieved without
feature selection. Lack of feature selection decreases the potential for over-training the system.
Nonetheless, feature selection may be an issue worth addressing in the future.

5. Conclusions

The implementation of the LRb allowed us to utilize all the information present in the medical
database. Compared with other efforts, this enhanced the performance at high sensitivities.
The high specificity at 100% sensitivity may be explained by the use of all available information
by the LRb. No feature data and no cases are discarded due to missing values. This means
that more information is available to accurately estimate the true feature distributions. Also
it was established that when testing on cases with missing feature values, the database should
be trained on cases with missing values for best performance.

The LRb performance was exemplary for the task of biopsy classification. Without
computing the ROC curve for the physicians' performance, we can state that this classifier has
achieved better performance than an individual physician. Note that the classifier is trained
on the collective knowledge of numerous physicians. Theoretically, each physician operated
at the 100% sensitivity point, and conservative behaviour resulted in the misclassification
of many benign cases. The LRb was able to maintain 100% sensitivity, while correctly
identifying on average 32% of benign cases that should be spared from biopsy. This suggests
that the classifier could be a valuable tool for individual physicians, by decreasing the number
of benign cases sent to biopsy.
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Abstract

OBJECTIVE: The purpose of this study was to validate the performance of a previously

developed computer-aid for breast mass classification on a new independent database of 151

cases that were not used for algorithm development.

MATERIALS AND METHODS: A computer-aid (classifier) based on the likelihood ratio

(LRb) was previously developed on a database of 670 mass cases. The 670 cases (245

malignant) from one medical institution were described using 16 features from the BI-

RADSTM lexicon and patient history findings. Continued data collection yielded additional

151 (43 malignant) cases that were previously unseen by the classifier. These new cases

were examined by the developed classifier. Performance evaluation methods included

Receiver Operating Characteristic (ROC), round-robin, and leave-one-out bootstrap

sampling.

RESULTS: The performance of the classifier on the training data yielded an average ROC

area of 0.90+/- 0.02, and partial ROC area (o.9oAUC) of 0.60+/-0.06. The exact non-

parametric performance on the independent set of 151 cases yielded a ROC area of 0.88 and

0.90AUC of 0.57. Using a 100% sensitivity cutoff threshold established on the training data,

the classifier was able to correctly identify 100% of the malignant lesions in the new

independent set, while potentially obviating 26% of the biopsies performed on benign

lesions.

CONCLUSION: In this pre-clinical evaluation, the LRb classifier performed equally well on

the new independent data that was not used for classifier development. The LRb classifier

performance compared favorably with an artificial neural network. The LRb classifier shows

promise as a potential aid in reducing the number of biopsies performed on benign lesions.

2 out of 19
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Introduction

X-ray mammography, while highly sensitive to mammographic abnormalities, has

low specificity to benign lesions. The low specificity to benign lesions is due mainly to

similar radiographic appearance of benign and malignant lesions, and the physicians'

cautious recommendations. Consequently as many as 65-85%1'- of breast biopsies are

performed on benign lesions. The potentially inordinate biopsy of benign lesions raises

emotional, physical and financial burdens to the patients and clinic. 4-7 Overall, excessive

biopsy reduces the efficacy of mammographic screening.

The diagnostic performance for suspicious lesions in mammography may be

enhanced by computer decision aids that could supply additional information about the

likelihood of malignancy. Such computer-aids represent a low-cost, non-invasive accessory

to diagnosis by providing a swift second opinion that can be highly accurate. Computer-aids

for mammography have been applied to the task of detection of mammographic lesions',9 and

to classification of suspicious lesions.I°0 11 In this work, we concentrate on the classification of

mammographic mass lesions.

While a great amount of research has been performed in developing and testing

computer aids for mammography during the last three decades, only recently has research

appeared in which extensively trained CAD tools are tested on completely new data. By
"1new" we mean cases that have not been available for classifier training and development,

and are thus "unknown" to the classifier. Such evaluation on new data is referred to as

classifier validation. Although classifier training methods, such as Round-Robin and cross-

validation, use portions of data at a time for development, they do not guarantee unbiased

future performance estimation. This occurs since all available training data is eventually

used for classifier development and the classifier has some "knowledge" of all the cases.

Therefore, classifier validation is crucial in determining whether the trained classifier is

generalizable to new unknown data and thus suitable for actual clinical application.

Validation studies of CAD classifiers for breast cancer show encouraging results for

the future of CAD in mammography. Huo et.al.12 evaluated a CAD system for the

classification of mammographic masses on a 110 case database, achieving Az values

(parametric area under the binormal ROC) of 0.82. Chang et.al.' 3 assessed a CAD system for
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the detection of mirocalcification clusters on 386 new digitized mammogram images. They

achieved 89.5% sensitivity at an average false-positive detection rate of 0.39 per image.

Tourassi et.al. 14 performed the validation of a constraint satisfaction neural network on 1030

breast biopsy cases. Using mammographic and clinical findings, an Az of 0.81+/-0.02 was

achieved for the biopsy cases. These studies have demonstrated that it is possible to develop

a computer aid that is generalizable to new unknown cases, and thus promising for potential

clinical application.

In our previous study, we developed a likelihood ratio based (LRb) classifier for

breast biopsy prediction."5 The classifier was developed on 671 breast mass biopsy cases.

Suspicious mammographic mass lesions were described using BI-RADSTM lexicon"6 and

patient history findings. In the clinical environment, these findings would be entered by a

clinician into the classifier. Based on the findings, the classifier would predict the likelihood

of malignancy and suggest either biopsy or short-term follow-up. Since the BI-RADSTM

lexicon was developed to standardize mammography reporting, it is conceivable that the

model should perform well regardless of the clinician that makes the BI-RADSTM

assessments.

Very high sensitivity is needed for the possible clinical acceptance of a computer tool

that classifies lesions that have already been detected. It is considered a worse error in

judgment to misclassify a detected lesion as benign, when in fact it is malignant. High

sensitivity presents a great challenge to any computer-aid that attempts to assist in the lesion

classification task.

We report on the performance of the classifier on the 670 cases (due to

inconsistencies, one case was subsequently removed from the database for this study). In the

present study, we present the performance of the classifier on a new independent data set of

151 cases that was not included in the classifier development. We document that the

classifier was robust and its performance remained high on the new data.

Methods

Description of databases

The original data, collected at one medical center between 1988 and 2000, consisted

of 670 biopsy cases that contained a suspicious mass on a mammogram. These mass cases
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were defined as cases that had a mass lesion and any other findings. These other findings

included, for example, microcalcifications and architectural distortions. The data were

collected as part of standard clinical practice, with approval from appropriate institutional

review boards. All physicians were dedicated breast imaging radiologists. Since all the

cases were sent to biopsy, the biopsy outcome was available from the histopathological

analysis. Of the 670 cases, 244 (36%) proved malignant at biopsy, while the rest - 426 (64%)

- were benign.

Each suspicious mammographic lesion was described by a dedicated breast-imaging

radiologist using the BI-RADSTM lexicon. Each case in the database was thus represented

using sixteen features based on the BI-RADSTM lexicon and patient history. These sixteen

features included mass margin, mass shape, mass density, mass size, calcification

morphology, calcification distribution, calcification number, associated findings, special

cases, quadrant location, change from prior mammogram, breast side, architectural distortion

as main finding, hormone use, menopausal status and patient age. For the 670 cases, 1.3 +/-

1.1 feature values were missing (not recorded) per case. However, no cases were excluded

on the basis of missing features, and all 670 cases even with some missing values were

utilized for the algorithm/classifier development. Table 1 lists the characteristics of the

training/testing data sets.

Ongoing data collection at the medical institution yielded another 151 biopsy cases.

While this case subset became available during the course of our research, it was not

included in classifier training and development. This subset contained 108 benign, 43

,malignant (151 total) mass cases that were collected similarly to the original set. However,

all of the new validation cases were missing two feature values: menopausal status and

hormone use. This information had not been collected and was not available for the present

evaluation. As a result, 3.2 +/- 1.0 feature values were missing per validation case. The case

composition of the sets may represent the clinical situation, in which past cases are used to

determine the outcome of more recent cases with differing characteristics. If the two sets

were identical in characteristics, it would not be necessary to perform a validation test. The

characteristics of the 151 case independent set are listed in Table 1.
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Computer Classifier

The computer classifier developed here for breast mass classification was based on

the likelihood ratio (ideal observer) paradigm. The likelihood ratio provides the optimal

classifier for the binary outcome situation (malignant/benign), given the true feature

distributions."7-9 The true feature distributions for the categorical BI-RADSTM features were

estimated using a histogram approach. This means that the features and thus classifier were

not dependent on values assigned to the feature findings. Each feature distribution was

estimated using all available cases, and then the outputs from each distribution were merged

to give the final classifier output. The classifier was developed and trained on the previously

available 670 mass Duke cases.

Actual clinical application of a classifier requires establishing a sensitivity threshold

to decide which cases are malignant and which cases are benign. In practice, this is

accomplished by establishing a cutoff threshold from the ROC curve (vide infra Classifier

Evaluation Methods) of the training data. We evaluated four sensitivity thresholds (100%,

99%, 98%, and 95%) that might be clinically acceptable for biopsy classification. For each

sensitivity level, two different methods were utilized to determine their ROC thresholds.

Since non-parametric ROC analysis was used, the thresholds were determined based on the

ROC curves of the training/testing data set for both methods. The first method involved the

establishment of thresholds directly from the Round Robin (RR) ROC curve of the 670

training cases, and we will refer to it as threshold method RR. The second method, named

threshold method BB, involved the establishment of most often occurring thresholds from the

bootstrap evaluation of the 670 training cases. For a given sensitivity level (eg. 100%), the

distribution of 3000 thresholds from each bootstrap run was examined. The peak of this

distribution was established as the most likely and consistent threshold for the given

sensitivity level.

Classifier Evaluation Methods

Receiver Operating Characteristic (ROC)2",21 analysis was used to evaluate the

classifier. The ROC curve illustrates the performance of a classifier over all sensitivity and

specificity levels. A succinct measure of performance is the area under the ROC curve

(AUC). 20 The AUC can be described as the average specificity over all sensitivities. The
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AUC can range from 0.5 (chance performance) to 1.0 (perfect performance). Other

measures of performance relating to the ROC curve include partial area index 22 (o.9oAUC)

above the sensitivity of 90%, which represents the average performance of the classifier at

sensitivities from 90% to 100%. The partial area is a more clinically meaningful measure of

performance when high sensitivity is essential. Other measures of performance may include

points on the ROC curve corresponding to specific sensitivity and specificity. The sensitivity

at a fixed specificity is often preferable to the AUC when evaluating a test for a particular

application.23 Since in this application we are interested in correctly diagnosing malignancies

while decreasing the number of biopsies performed on benign findings, we are interested in

very high sensitivity and high specificity. Additional measures of performance included

specificity at 95% sensitivity, specificity at 98% sensitivity, and specificity at 100%

sensitivity. Although specificity at a high sensitivity (such as 100%) may seem like a very

restrictive goal, other studies have also used this operating point for specific applications."

In this application, specificity at 100% sensitivity indicates how many benign cases could be

potentially spared from biopsy while correctly diagnosing all malignancies.

Training and Testing. Leave-one-out bootstrap2526 was used for classifier training and

testing. Leave-one-out bootstrap (also referred to so) is a subcomponent of the 0.632

bootstrap,2 6' 27 without the error correction. This means that theoretically, the leave-one-out

bootstrap gives pessimistic estimates of performance. For the training/testing stage, 3000

bootstrap samples were drawn with replacement from the original case set. Each bootstrap

sample was used to train the classifier, and the cases not in the bootstrap sample were used to

test the classifier. This resulted in 3000 estimates of performance, from which the mean

performance (ROC measurements) and standard deviations were computed. In effect, the

classifier was trained and tested 3000 times, each time on a different subset of the training

/testing data.

Independent Validation. To simulate the performance of the optimized LRb classifier

in a potential clinical situation, the classifier was applied to analyze the independent case set.

The performance on the independent case set was calculated from the validation ROC curve.

The thresholds that had been established on the training data were applied directly to the

validation ROC curve. This yielded a binary cutoff for establishing a clinical

recommendation: proceed with biopsy or with short-term follow-up. The performance at the
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thresholds (95-100% sensitivity) was examined in terms of numbers of cases that would be

correctly diagnosed as benign and malignant. This corresponds to the exact maximum

performance one would expect if the classifier was used in the clinic.

Results

Results of Training and Testing

The results of the training and classifier development are listed in Table 2

(evaluations 1 & 2). The leave-one-out bootstrap evaluation represents the average of the

3000 training-runs of the classifier. Each training-run was performed with a slightly different

subset of the 670 cases. The average AUC was 0.90+/- 0.02, while the partial area 0.90AUC

was 0.60 +/-0.06. On average, the classifier achieved 32% specificity at 100% sensitivity. A

simple Round Robin evaluation was also carried out and the values for this evaluation are

listed in Table 1. Figure 2 shows the resulting Round Robin (RR) curve for the

training/testing of 670 cases (curve A).

Figure 3 shows the distribution of cutoff thresholds established for each of the four

sensitivities. These threshold distributions were established from the bootstrap evaluation.

The peak of each distribution was chosen as the most likely threshold for establishing the

given sensitivity on the training data. These peaks are the BB method thresholds.

Results of Independent Validation

Figure 2 shows the curve for the independently evaluated 151 cases (curve B). The

exact ROC results for the independent evaluation (Table 2) are as follows: AUC = 0.88, and

0.90AUC = 0.57. This result is similar to the Round Robin training evaluation of curve A

(AUC=0.90, 0.90AUC =0.61, Table 2). Since to our knowledge there is no suitable method to

compare these two results, we cannot discuss the statistical significance of the non-

parametric difference. As shown in Figure 2, the two curves and their AUC values are very

close. Considering that the classifier had no prior knowledge of any kind of these 151 cases,

the results of the independent performance on the new data set are very promising for

potential future clinical application.
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A Round Robin evaluation of the independent data was also performed. The results

of this evaluation are listed in Table 2. The Round Robin performance of the independent

set was lower and had greater standard deviation than that of the validation. This suggests

that the independent data set did not contain enough information to reliably train the

classifier, even for Round Robin testing on itself.

Table 3 shows the performance on the validation set using the four cutoff thresholds

established from the training/testing data. The most conservative threshold with impressive

performance was 100% sensitivity. For the BB method, applying the 100% sensitivity

threshold to the new data set actually yielded 98% sensitivity (misclassification of 1

malignancy) and specificity of 32%. This means that 32% of the benign lesions would be

spared from biopsy. On the other hand, using the RR method threshold, we achieved 100%

sensitivity and 26% specificity. This means that no malignancies would be misclassified,

while obviating 26% of the biopsies on benign lesions. For the 100% sensitivity level, the

RR method yielded higher resulting sensitivity than the BB method. The 100% - 95%

sensitivity thresholds are also plotted on the validation curve in Figure 4. The classifier and

both threshold methods produced encouraging results.

For the sake of completeness, we performed an analysis to evaluate the effect of

bootstrap thresholds. Since the bootstrap evaluation produces a distribution of values for

each measurement of interest (such as specificity at 98% sensitivity, Figure 3), the 95%

confidence interval thresholds and the resulting sensitivity were examined (Table 4). For

example, when the lower threshold established on the bootstrap evaluation was applied to the

round robin curve of the 670 cases, it yielded 97% sensitivity: The upper threshold yielded

100% sensitivity. These endpoint thresholds were also applied to the ROC curve of the

independent validation set. The lower threshold corresponding to 100% sensitivity

corresponded to 91% sensitivity on the validation ROC curve. The upper threshold

corresponded to 100% sensitivity on the validation ROC curve. The results for other

thresholds/sensitivities are listed in Table 4.

Performance Comparison to Artificial Neural Network

An independent evaluation was also carried out using the same data sets and an

artificial neural network (ANN"°). The ANN was a three layer, feed forward and error-back
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propagation network. The ANN was trained on the 670 cases using 10-fold cross-validation.

All network parameters were established empirically and were fixed after the training. The

training yielded AUC of 0.93 +/- 0.01, and 0.90AUC of 0.64. At 100% sensitivity, the ANN

had 0% specificity. At 98% sensitivity, the ANN had 41% specificity. The AUC and 0.90AUC

were higher for the ANN than the LRb for the training stage. However, the results for the

ANN are lower than the LRb at the 100% sensitivity level.

The trained ANN was then evaluated on the independent set of 151 cases. This

validation test yielded an ROC area of 0.83+/-0.04, and 0.90AUC of 0.23+/0.10. Applying

the 98% training threshold to the independent ROC yielded 91% resultant sensitivity, and

41% specificity. The results of the independent validation of the ANN were lower than the

results of the LRb on this new independent data set. The differences were almost significant

for AUC (p=0.058) and significant for 0 .90AUC (p=0.002). Although the ANN was trained in

a cross-validated manner with care to prevent over-training, the ANN still evidently overfit

the training data. The ANN produced poorer results than the LRb on the new independent

data set.

Discussion

The large number of biopsies performed on benign lesions is a well-recognized issue

of mammography. One potential solution to this problem incorporates the use of computer-

aided diagnosis tools that could offer a second opinion to a physician about a suspicious

mammographic lesion. To standardize the reporting on suspicious mammographic lesions,

the BI-RADSTM lexicon was developed. In this and previous studies,28' 29 we have shown that

it is possible to utilize this standard lexicon to develop a computer-aid (LRb) that can classify

suspicious mammographic lesions. The computer-aid helps to identify lesions that are likely

benign and should not be sent to biopsy, which would result in a reduction in the number of

benign lesions sent to biopsy. The high sensitivity of the LRb classifier prevents the

misclassification of malignant lesions. The reduction in biopsies performed on benign

lesions would reduce the stress and risks to patients, increase the effectiveness of

mammographic screening and decrease costs.

This study performed the first step in evaluating the potential application of the LRb

computer-aid in the clinic. This pre-clinical evaluation involved the analysis of cases
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previously unseen by the classifier. The cases represented a real-life situation, being recent

and containing missing values. (The next step, not addressed in this study, would be

evaluating the benefit to a physician utilizing this classifier.) In order to evaluate the LRb

classifier in this pre-clinical manner, distinct performance measures were obtained from the

ROC. These included the high sensitivity area of the ROC curve, as well as specificities at

high sensitivities. We even analyzed the specificity at 100% sensitivity, which determines

how many benign cases would be potentially spared from biopsy, while detecting 100% of

malignant lesions. This measure is the most conservative performance threshold for our

application.

The performance of the classifier, using even the most conservative performance

measures, was commendable on a new independent data set previously unseen by the

classifier. Using thresholds established on the training data, the classifier was able to

correctly identify 26% of the benign lesions, while maintaining 100% sensitivity to

malignant lesions. This represents an improvement over individual physician's performance,

as all cases in the data set were originally sent to biopsy. This improvement can be

accomplished by utilizing the collective knowledge of the physicians by the LRb classifier.

Another classifier, an ANN developed for this problem, had lower validation

performance on the new data set than the LRb. There are several reasons that could explain

the ANN's poorer performance with respect to the LRb. The development time invested into

training the original network was significantly smaller than that time invested in developing

the LRb. The ANN analyzed the cases using the same feature-to-number encoding scheme

as in prior research, and was probably dependent on the numbers assigned to feature values.

Furthermore, the ANN also utilized the information about missing feature values in simple

manner. This may have had a detrimental effect on the ANN. However, training with fewer

features (and thus much fewer missing values) had little effect on the ANN performance.

This suggests that the ANN utilized only a portion of the information contained in all

features, in contrast to the LRb. Using more hidden nodes did not improve ANN's

performance. All these reasons could have contributed to the ANN's lower performance as

compared to the LRb.

Several characteristics of the LRb classifier make it an attractive tool for the

classification of mammographic lesions using BI-RADSTM lexicon. The LRb utilizes the
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collective knowledge of numerous physicians to make a recommendation on a new case.

The LRb can perform classification even when cases are missing some feature values.

Missing feature values are a common real-life problem. Furthermore, the training/testing and

validation data sets had differing characteristics (such as distribution of missing features) yet

the classifier was able to perform commendably on the new data. The LRb appears more

immune to over-training than an ANN, and is able to generalize well to previously unseen

cases. The classifier is also computationally fast and simple, especially in the

trained/developed state. All of these characteristics make the LRb a useful tool that could

decrease the number of biopsies performed on benign lesions without compromising the

classification of malignant lesions.

Conclusion

In this study, we evaluated the potential clinical application of the previously-

developed LRb classifier for breast biopsy prediction. The classifier, developed on a

database of 670 cases, was applied here to a new independent set of 151 biopsy cases. The

classifier performed equally well on this new independent data that was not used for

classifier development. This can be considered a successful pre-clinical evaluation of the

classifier. The LRb classifier shows promise as a potential aid in reducing the number of

biopsies performed on benign lesions.
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Tables

Table 1: Characteristics of the training/testing set and the validation set.

Characteristic Training/Testing Set Validation Set

Number of cases 670 151
Number of malignant cases 244 (36%) 43 (28%)

Number of benign cases 426 (64%) 108 (72%)
Average age (age range) 56 years (24-87) 54 years (22 - 90)

Number of cases with microcalcifications 79 (12%) 13 (9%)
Number of architectural distortions 2 4

Number of missing feature values per case 1.3+/-1.1 3.2+/-1.0
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Table 2: ROC results for the A) LRb trained and tested on the 670 mass cases, and
B) for the LRb trained on the 670 cases and tested on an independent dataset of 151 cases.

Specificity at Sensitivity of
Experiment Evaluation Type AUC 0.90AUC 95% 98% 100%

Type
(Number of

Cases)

1 Training & Leave-one-out 0.90 +/- 0.60 +/- 64% 46% 32%
Testing (670) bootstrap 0.02 0.06

2 Training & Round Robin 0.90 +/- 0.61+/- 66% 52% 25%
Testing (670) 0.01 0.04

3 Validation Independent 0.88 0.57 69% 57% 29%
(151) evaluation on

151 cases*
4 Test of Round Robin on 0.86+/- 0.44+/- 48% 19% 17%

Validation Set 151 cases 0.04 0.17
(151)

* the error bars are not included since the performance measure represents the exact values

that would result when the developed classifier is applied to the new data

14 out of 19



05/01/04 12:23 PM

Table 3: Performance of Threshold Methods RR and BB at 100% - 95% sensitivity levels on
the 151 independent cases.

ROC 151 ROC 151 BB BB RR Method RR Method
Original Original Method Method Resulting Resulting
Sensitivit Specificity Resulting Resulting Sensitivity Specificity
y (maximu Sensitivit Specificity

m y
achievable
)

100% 29% 98% 32% 100% 26%
99% 29% 98% 32% 98% 44%
98% 57% 95% 64% 95% 66%
95% 69% 88% 71% 81% 75%
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Table 4: Bootstrap range in sensitivities applied to the
Round Robin evaluation of the training/testing set

and to the independent validation.

Sensitivity Range in Sensitivity Range in Sensitivity
on Bootstrap for 95% of as applied to ROC
Sample Bootstrap samples curve of 151 cases

applied to Round
Robin evaluation of
training/testing set

100% 97%- 100% (3%) 91% - 100% (9%)
99% 96%- 100% (4%) 88%- 100% (12%)
98% 94%- 100% (6%) 79% - 98% (18%)
95% 88% - 98% (10%) 77% - 95% (19%)
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Figures

Figure 1: Diagram of the trained classifier with inputs and outputs.

Figure 2: ROC curves for the A) LRb trained and tested on the 670 mass cases using Round
Robin, and B) for the LRb trained on the 670 cases and tested on an independent dataset of
151 cases.

Figure 3: The distributions of thresholds (Beta) at A) 95%, B) 98%, C) 99%, and D) 100%
sensitivity levels. These distributions were obtained from the bootstrap evaluation on 670
cases. The peak of each distribution was used to determine the most likely threshold for the
given sensitivity. These cutoff thresholds are referred to as the BB method thresholds.

Figure 4: The performance of thresholds applied to the validation ROC curve of 151 cases.
The thresholds were determined from the training on 670 cases using BB and RR methods.
Next to each threshold is the original training sensitivity. Note that the first drop in
sensitivity on the ROC curve (to 98%) corresponds to a misclassification of one malignant
case in the independent set.
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